Chapter 2

Python Ecosystem for Machine
Learning

The Python ecosystem is growing and may become the dominant platform for machine learning.
The primary rationale for adopting Python for machine learning is because it is a general
purpose programming language that you can use both for R&D and in production. In this
chapter you will discover the Python ecosystem for machine learning. After completing this
lesson you will know:

1. Python and it’s rising use for machine learning.
2. SciPy and the functionality it provides with NumPy, Matplotlib and Pandas.
3. scikit-learn that provides all of the machine learning algorithms.

4. How to setup your Python ecosystem for machine learning and what versions to use

Let’s get started.

2.1 Python

Python is a general purpose interpreted programming language. It is easy to learn and use
primarily because the language focuses on readability. The philosophy of Python is captured in
the Zen of Python which includes phrases like:

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.

Sparse is better than dense.
Readability counts.

Listing 2.1: Sample of the Zen of Python.

It is a popular language in general, consistently appearing in the top 10 programming
languages in surveys on StackOverflow!. It’s a dynamic language and very suited to interactive

"http://stackoverflow.com/research/developer-survey-2015

9

2.2. SciPy 10

development and quick prototyping with the power to support the development of large applica-
tions. It is also widely used for machine learning and data science because of the excellent library
support and because it is a general purpose programming language (unlike R or Matlab). For
example, see the results of the Kaggle platform survey results in 2011% and the KDD Nuggets
2015 tool survey results®.

This is a simple and very important consideration. It means that you can perform your
rescarch and development (figuring out what models to use) in the same programming language
that you use for your production systems. Greatly simplifying the transition from development
to production.

2.2 SciPy

SciPy is an ecosystem of Python libraries for mathematics, science and engineering. It is an
add-on to Python that you will need for machine learning. The SciPy ecosystem is comprised of
the following core modules relevant to machine learning:

e NumPy: A foundation for SciPy that allows you to efficiently work with data in arrays.
e Matplotlib: Allows you to create 2D charts and plots from data.

e Pandas: Tools and data structures to organize and analyze your data.

To be effective at machine learning in Python you must install and become familiar with
SciPy. Specifically:

e You will prepare your data as NumPy arrays for modeling in machine learning algorithms.

e You will use Matplotlib (and wrappers of Matplotlib in other frameworks) to create plots
and charts of your data.

e You will use Pandas to load explore and better understand your data.

2.3 scikit-learn

The scikit-learn library is how you can develop and practice machine learning in Python. It is
built upon and requires the SciPy ecosystem. The name scikit suggests that it is a SciPy plug-in
or toolkit. The focus of the library is machine learning algorithms for classification, regression,
clustering and more. It also provides tools for related tasks such as evaluating models, tuning
parameters and pre-processing data.

Like Python and SciPy, scikit-learn is open source and is usable commercially under the BSD
license. This means that you can learn about machine learning, develop models and put them
into operations all with the same ecosystem and code. A powerful reason to use scikit-learn.

’http://blog.kaggle.com/2011/11/27/kagglers—-favorite-tools/
3http://www.kdnuggets.com/polls/2015/analytics-data-mining-data-science-software-used.
html

2.4. Python Ecosystem Installation 11

2.4 Python Ecosystem Installation

There are multiple ways to install the Python ecosystem for machine learning. In this section
we cover how to install the Python ecosystem for machine learning.

2.4.1 How To Install Python

The first step is to install Python. I prefer to use and recommend Python 2.7. The instructions
for installing Python will be specific to your platform. For instructions see Downloading Python*
in the Python Beginners Guide. Once installed you can confirm the installation was successful.
Open a command line and type:

python --version

Listing 2.2: Print the version of Python installed.

You should see a response like the following:

Python 2.7.11

Listing 2.3: Example Python version.

The examples in this book assume that you are using this version of Python 2 or newer. The
examples in this book have not been tested with Python 3.

2.4.2 How To Install SciPy

There are many ways to install SciPy. For example two popular ways are to use package
management on your platform (e.g. yum on RedHat or macports on OS X) or use a Python
package management tool like pip. The SciPy documentation is excellent and covers how-
to instructions for many different platforms on the page Installing the SciPy Stack®. When
installing SciPy, ensure that you install the following packages as a minimum:

® scipy

e numpy

matplotlib

e pandas

Once installed, you can confirm that the installation was successful. Open the Python
interactive environment by typing python at the command line, then type in and run the
following Python code to print the versions of the installed libraries.

scipy

import scipy

print('scipy: {}'.format(scipy.__version__))
numpy

import numpy

print ('numpy: {}'.format (numpy.__version__))

‘https://wiki.python.org/moin/BeginnersGuide/Download
Shttp://scipy.org/install.html

2.4. Python Ecosystem Installation 12

matplotlib

import matplotlib

print('matplotlib: {}'.format(matplotlib.__version__))
pandas

import pandas

print('pandas: {}'.format(pandas.__version__))

Listing 2.4: Print the versions of the SciPy stack.

On my workstation at the time of writing I see the following output.

scipy: 0.18.1
numpy: 1.11.2
matplotlib: 1.5.1
pandas: 0.18.0

Listing 2.5: Example versions of the SciPy stack.

The examples in this book assume you have these version of the SciPy libraries or newer. If
you have an error, you may need to consult the documentation for your platform.

2.4.3 How To Install scikit-learn

I would suggest that you use the same method to install scikit-learn as you used to install SciPy.
There are instructions for installing scikit-learn®, but they are limited to using the Python
pip and conda package managers. Like SciPy, you can confirm that scikit-learn was installed
successfully. Start your Python interactive environment and type and run the following code.

scikit-learn
import sklearn
print('sklearn: {}'.format(sklearn.__version__))

Listing 2.6: Print the version of scikit-learn.

It will print the version of the scikit-learn library installed. On my workstation at the time
of writing I see the following output:

sklearn: 0.18

Listing 2.7: Example versions of scikit-learn.

The examples in this book assume you have this version of scikit-learn or newer.

2.4.4 How To Install The Ecosystem: An Easier Way

If you are not confident at installing software on your machine, there is an easier option for you.
There is a distribution called Anaconda that you can download and install for free”. It supports
the three main platforms of Microsoft Windows, Mac OS X and Linux. It includes Python,
SciPy and scikit-learn. Everything you need to learn, practice and use machine learning with
the Python Environment.

Shttp://scikit-learn.org/stable/install.html
"https://www.continuum.io/downloads

2.5. Summary 13

2.5 Summary
In this chapter you discovered the Python ecosystem for machine learning. You learned about:
e Python and it’s rising use for machine learning.

e SciPy and the functionality it provides with NumPy, Matplotlib and Pandas.

e scikit-learn that provides all of the machine learning algorithms.

You also learned how to install the Python ecosystem for machine learning on your worksta-
tion.

2.5.1 Next

In the next lesson you will get a crash course in the Python and SciPy ecosystem, designed
specifically to get a developer like you up to speed with ecosystem very fast.

Chapter 3

Crash Course in Python and SciPy

You do not need to be a Python developer to get started using the Python ecosystem for machine
learning. As a developer who already knows how to program in one or more programming
languages, you are able to pick up a new language like Python very quickly. You just need to
know a few properties of the language to transfer what you already know to the new language.
After completing this lesson you will know:

1. How to navigate Python language syntax.

2. Enough NumPy, Matplotlib and Pandas to read and write machine learning Python
scripts.

3. A foundation from which to build a deeper understanding of machine learning tasks in
Python.

If you already know a little Python, this chapter will be a friendly reminder for you. Let’s
get started.

3.1 Python Crash Course

When getting started in Python you need to know a few key details about the language syntax
to be able to read and understand Python code. This includes:

e Assignment.

Flow Control.

Data Structures.

Functions.

We will cover each of these topics in turn with small standalone examples that you can type
and run. Remember, whitespace has meaning in Python.

3.1.1 Assignment

As a programmer, assignment and types should not be surprising to you.

14

3.1. Python Crash Course 15

Strings

Strings

data = 'hello world'
print(datal0])

print (len(data))
print(data)

Listing 3.1: Example of working with strings.

Notice how you can access characters in the string using array syntax. Running the example
prints:

h
11
hello world

Listing 3.2: Output of example working with strings.

Numbers

Numbers
value = 123.1
print(value)
value = 10
print(value)

Listing 3.3: Example of working with numbers.

Running the example prints:

123.1
10

Listing 3.4: Output of example working with numbers.

Boolean

Boolean

a = True
b = False
print(a, b)

Listing 3.5: Example of working with booleans.

Running the example prints:

(True, False)

Listing 3.6: Output of example working with booleans.

3.1. Python Crash Course 16

Multiple Assignment

Multiple Assignment
a, b, c=1, 2, 3
print(a, b, ¢)

Listing 3.7: Example of working with multiple assignment.

This can also be very handy for unpacking data in simple data structures. Running the
example prints:

1, 2, 3

Listing 3.8: Output of example working with multiple assignment.

No Value

No value
a = None
print(a)

Listing 3.9: Example of working with no value.

Running the example prints:

None

Listing 3.10: Output of example working with no value.

3.1.2 Flow Control

There are three main types of flow control that you need to learn: If-Then-Else conditions,
For-Loops and While-Loops.

If-Then-Else Conditional

value = 99
if value == 99:

print 'That is fast'
elif value > 200:

print 'That is too fast'
else:

print 'That is safe'

Listing 3.11: Example of working with an If-Then-Else conditional.

Notice the colon (:) at the end of the condition and the meaningful tab intend for the code
block under the condition. Running the example prints:

If-Then-Else conditional

Listing 3.12: Output of example working with an If-Then-Else conditional.

3.1. Python Crash Course

For-Loop

17

For-Loop
for i in range(10):
print i

Listing 3.13: Example of working with a For-Loop.

Running the example prints:

© 00 ~NO Ok WN = O

Listing 3.14: Output of example working with a For-Loop.

While-Loop

While-Loop

i=0

while i < 10:
print i
i+=1

Listing 3.15: Example of working with a While-Loop.

Running the example prints:

© 00 N U WN - O

Listing 3.16: Output of example working with a While-Loop.

3.1.3 Data Structures

There are three data structures in Python that you will find the most used and useful. They

are tuples, lists and dictionaries.

3.1. Python Crash Course 18

Tuple

Tuples are read-only collections of items.
a= (1, 2,3

print a

Listing 3.17: Example of working with a Tuple.

Running the example prints:

1, 2, 3

Listing 3.18: Output of example working with a Tuple.

List

Lists use the square bracket notation and can be index using array notation.

mylist = [1, 2, 3]
print("Zeroth Value: %d") % mylistl[0]
mylist.append(4)
print("List Length: %d") % len(mylist)
for value in mylist:

print value

Listing 3.19: Example of working with a List.

Notice that we are using some simple printf-like functionality to combine strings and
variables when printing. Running the example prints:

Zeroth Value: 1
List Length: 4
1

2
3
4

Listing 3.20: Output of example working with a List.

Dictionary

Dictionaries are mappings of names to values, like key-value pairs. Note the use of the curly
bracket and colon notations when defining the dictionary.

mydict = {'a': 1, 'b': 2, 'c': 3}
print("A value: %d") % mydict['a'l]
mydict['a'] = 11
print ("A value: %d") % mydict['a'l]
print("Keys: %s") % mydict.keys()
print("Values: %s") % mydict.values()
for key in mydict.keys(Q):

print mydict [key]

Listing 3.21: Example of working with a Dictionary.

Running the example prints:

3.2. NumPy Crash Course 19

A value: 1

A value: 11

Keys: ['a', 'c', 'b']
Values: [11, 3, 2]

11

3

2

Listing 3.22: Output of example working with a Dictionary.

Functions

The biggest gotcha with Python is the whitespace. Ensure that you have an empty new line
after indented code. The example below defines a new function to calculate the sum of two
values and calls the function with two arguments.

Sum function
def mysum(x, y):
return x + y

Test sum function
result = mysum(1l, 3)
print(result)

Listing 3.23: Example of working with a custom function.

Running the example prints:

Listing 3.24: Output of example working with a custom function.

3.2 NumPy Crash Course

NumPy provides the foundation data structures and operations for SciPy. These are arrays
(ndarrays) that are efficient to define and manipulate.

3.2.1 Create Array

define an array

import numpy

mylist = [1, 2, 3]

myarray = numpy.array(mylist)
print (myarray)

print (myarray.shape)

Listing 3.25: Example of creating a NumPy array.

Notice how we easily converted a Python list to a NumPy array. Running the example
prints:

3.2. NumPy Crash Course 20

[1 2 3]
@3,)

Listing 3.26: Output of example creating a NumPy array.

3.2.2 Access Data

Array notation and ranges can be used to efficiently access data in a NumPy array.

access values

import numpy

mylist = [[1, 2, 3], [3, 4, 5]]

myarray = numpy.array(mylist)

print (myarray)

print (myarray.shape)

print("First row: %s") % myarray[0]

print("Last row: %s") % myarray[-1]
print("Specific row and col: %s") % myarray[0, 2]
print("Whole col: %s") % myarrayl[:, 2]

Listing 3.27: Example of working with a NumPy array.

Running the example prints:

[[1 2 3]

[3 4 5]]
2, 3)
First row: [1 2 3]
Last row: [3 4 5]
Specific row and col: 3
Whole col: [3 5]

Listing 3.28: Output of example working with a NumPy array.

3.2.3 Arithmetic

NumPy arrays can be used directly in arithmetic.

arithmetic

import numpy

myarrayl = numpy.array([2, 2, 2])

myarray2 = numpy.array([3, 3, 3])

print("Addition: %s") % (myarrayl + myarray2)
print("Multiplication: %s") % (myarrayl * myarray2)

Listing 3.29: Example of doing arithmetic with NumPy arrays.

Running the example prints:

Addition: [5 5 5]
Multiplication: [6 6 6]

Listing 3.30: Output of example of doing arithmetic with NumPy arrays.

There is a lot more to NumPy arrays but these examples give you a flavor of the efficiencies
they provide when working with lots of numerical data. See Chapter 24 for resources to learn
more about the NumPy API.

3.3. Matplotlib Crash Course 21

3.3 Matplotlib Crash Course
Matplotlib can be used for creating plots and charts. The library is generally used as follows:

e Call a plotting function with some data (e.g. .plot()).
e (Call many functions to setup the properties of the plot (e.g. labels and colors).

e Make the plot visible (e.g. .show()).

3.3.1 Line Plot

The example below creates a simple line plot from one dimensional data.

basic line plot

import matplotlib.pyplot as plt
import numpy

myarray = numpy.array([1, 2, 3])
plt.plot(myarray)
plt.xlabel('some x axis')
plt.ylabel('some y axis')
plt.show()

Listing 3.31: Example of creating a line plot with Matplotlib.

Running the example produces:

3.3. Matplotlib Crash Course 22

3.0 . . .

25+ .

2.0 - .

some y axis

15¢ g

1.0 ' :
0.0 0.5 1.0 1.5 2.0

some X axis

Figure 3.1: Line Plot with Matplotlib

3.3.2 Scatter Plot

Below is a simple example of creating a scatter plot from two dimensional data.

basic scatter plot

import matplotlib.pyplot as plt
import numpy

X = numpy.array([1, 2, 3])

y = numpy.array([2, 4, 6])
plt.scatter(x,y)
plt.xlabel('some x axis')
plt.ylabel('some y axis')
plt.show()

Listing 3.32: Example of creating a line plot with Matplotlib.

Running the example produces:

3.4. Pandas Crash Course 23

some y axis

0.5 1.0 15 20 25 3.0 35
some X axis

Figure 3.2: Scatter Plot with Matplotlib

There are many more plot types and many more properties that can be set on a plot to
configure it. See Chapter 24 for resources to learn more about the Matplotlib API.

3.4 Pandas Crash Course

Pandas provides data structures and functionality to quickly manipulate and analyze data. The
key to understanding Pandas for machine learning is understanding the Series and DatakFrame
data structures.

3.4.1 Series

A series is a one dimensional array where the rows and columns can be labeled.

series

import numpy

import pandas

myarray = numpy.array([1, 2, 3])

rownames = ['a', 'b', 'c']

myseries = pandas.Series(myarray, index=rownames)

3.4. Pandas Crash Course 24

|print(myseries)

Listing 3.33: Example of creating a Pandas Series.

Running the example prints:

a 1

[3

Listing 3.34: Output of example of creating a Pandas Series.

You can access the data in a series like a NumPy array and like a dictionary, for example:

print (myseries[0])
print (myseries['a'])

Listing 3.35: Example of accessing data in a Pandas Series.

Running the example prints:

Listing 3.36: Output of example of accessing data in a Pandas Series.

3.4.2 DataFrame

A data frame is a multi-dimensional array where the rows and the columns can be labeled.

dataframe

import numpy

import pandas

myarray = numpy.array([[1, 2, 31, [4, 5, 611)

rownames = ['a', 'b']

colnames = ['one', 'two', 'three']

mydataframe = pandas.DataFrame(myarray, index=rownames, columns=colnames)
print (mydataframe)

Listing 3.37: Example of creating a Pandas DataFrame.

Running the example prints:

one two three
a 1 2 3
b 4 5 6

Listing 3.38: Output of example of creating a Pandas DataFrame.

Data can be index using column names.

print("method 1:")

print("one column: %s") % mydataframel['one']
print("method 2:")

print("one column: %s") % mydataframe.one

Listing 3.39: Example of accessing data in a Pandas DataFrame.

Running the example prints:

3.5. Summary 25

method 1:
a 1
b 4
method 2:
a 1
b 4

Listing 3.40: Output of example of accessing data in a Pandas DataFrame.

Pandas is a very powerful tool for slicing and dicing you data. See Chapter 24 for resources
to learn more about the Pandas API.

3.5 Summary

You have covered a lot of ground in this lesson. You discovered basic syntax and usage of
Python and three key Python libraries used for machine learning:

e NumPy.

e Matplotlib.

e Pandas.

3.5.1 Next

You now know enough syntax and usage information to read and understand Python code for
machine learning and to start creating your own scripts. In the next lesson you will discover
how you can very quickly and easily load standard machine learning datasets in Python.

Chapter 4

How To Load Machine Learning Data

You must be able to load your data before you can start your machine learning project. The
most common format for machine learning data is CSV files. There are a number of ways to
load a CSV file in Python. In this lesson you will learn three ways that you can use to load
your CSV data in Python:

1. Load CSV Files with the Python Standard Library.
2. Load CSV Files with NumPy.
3. Load CSV Files with Pandas.

Let’s get started.

4.1 Considerations When Loading CSV Data

There are a number of considerations when loading your machine learning data from CSV files.
For reference, you can learn a lot about the expectations for CSV files by reviewing the CSV
request for comment titled Common Format and MIMFE Type for Comma-Separated Values
(CSV) Files'.

4.1.1 File Header

Does your data have a file header? If so this can help in automatically assigning names to each
column of data. If not, you may need to name your attributes manually. Either way, you should
explicitly specify whether or not your CSV file had a file header when loading your data.

4.1.2 Comments

Does your data have comments? Comments in a CSV file are indicated by a hash (#) at the
start of a line. If you have comments in your file, depending on the method used to load your
data, you may need to indicate whether or not to expect comments and the character to expect
to signify a comment line.

'https://tools.ietf.org/html/rfc4180

26

4.2. Pima Indians Dataset 27

4.1.3 Delimiter

The standard delimiter that separates values in fields is the comma (,) character. Your file could
use a different delimiter like tab or white space in which case you must specify it explicitly.

4.1.4 Quotes

Sometimes field values can have spaces. In these CSV files the values are often quoted. The
default quote character is the double quotation marks character. Other characters can be used,
and you must specify the quote character used in your file.

4.2 Pima Indians Dataset

The Pima Indians dataset is used to demonstrate data loading in this lesson. It will also be used
in many of the lessons to come. This dataset describes the medical records for Pima Indians
and whether or not each patient will have an onset of diabetes within five years. As such it
is a classification problem. It is a good dataset for demonstration because all of the input
attributes are numeric and the output variable to be predicted is binary (0 or 1). The data is
freely available from the UCI Machine Learning Repository?.

4.3 Load CSYV Files with the Python Standard Library

The Python API provides the module CSV and the function reader () that can be used to load
CSV files. Once loaded, you can convert the CSV data to a NumPy array and use it for machine
learning. For example, you can download® the Pima Indians dataset into your local directory
with the filename pima-indians-diabetes.data.csv. All fields in this dataset are numeric
and there is no header line.

Load CSV Using Python Standard Library
import csv
import numpy

filename = 'pima-indians-diabetes.data.csv'
raw_data = open(filename, 'rb')
reader = csv.reader(raw_data, delimiter=',', quoting=csv.QUOTE_NONE)

x = list(reader)
data = numpy.array(x).astype('float')
print(data.shape)

Listing 4.1: Example of loading a CSV file using the Python standard library.

The example loads an object that can iterate over each row of the data and can easily be
converted into a NumPy array. Running the example prints the shape of the array.

(768, 9)

Listing 4.2: Output of example loading a CSV file using the Python standard library.

’https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
3https://goo.gl/vhmleU

4.4. Load CSV Files with NumPy 28

For more information on the csv.reader() function, see CSV File Reading and Writing in
the Python API documentation®.

4.4 Load CSV Files with NumPy

You can load your CSV data using NumPy and the numpy.loadtxt () function. This function
assumes no header row and all data has the same format. The example below assumes that the
file pima-indians-diabetes.data.csv is in your current working directory.

Load CSV using NumPy

from numpy import loadtxt

filename = 'pima-indians-diabetes.data.csv'
raw_data = open(filename, 'rb')

data = loadtxt(raw_data, delimiter=",")
print(data.shape)

Listing 4.3: Example of loading a CSV file using NumPy.

Running the example will load the file as a numpy.ndarray® and print the shape of the data:

(768, 9)

Listing 4.4: Output of example loading a CSV file using NumPy.

This example can be modified to load the same dataset directly from a URL as follows:

Load CSV from URL using NumPy

from numpy import loadtxt

from urllib import urlopen

url = 'https://goo.gl/vhmleU'

raw_data = urlopen(url)

dataset = loadtxt(raw_data, delimiter=",")
print(dataset.shape)

Listing 4.5: Example of loading a CSV URL using NumPy.

Again, running the example produces the same resulting shape of the data.

(768, 9)

Listing 4.6: Output of example loading a CSV URL using NumPy.

For more information on the numpy.loadtxt ()% function see the API documentation.

4.5 Load CSV Files with Pandas

You can load your CSV data using Pandas and the pandas.read_csv() function. This function
is very flexible and is perhaps my recommended approach for loading your machine learning
data. The function returns a pandas.DataFrame’ that you can immediately start summarizing
and plotting. The example below assumes that the pima-indians-diabetes.data.csv file is
in the current working directory.

‘https://docs.python.org/2/library/csv.html
Shttp://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.ndarray.html
Shttp://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.loadtxt.html
"http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html

4.6. Summary 29

Load CSV using Pandas

from pandas import read_csv

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(filename, names=names)

print(data.shape)

Listing 4.7: Example of loading a CSV file using Pandas.

Note that in this example we explicitly specify the names of each attribute to the DataFrame.
Running the example displays the shape of the data:

(768, 9)

Listing 4.8: Output of example loading a CSV file using Pandas.

We can also modify this example to load CSV data directly from a URL.

Load CSV using Pandas from URL

from pandas import read_csv

url = 'https://goo.gl/vhmleU'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(url, names=names)

print(data.shape)

Listing 4.9: Example of loading a CSV URL using Pandas.

Again, running the example downloads the CSV file, parses it and displays the shape of the
loaded DataFrame.

(768, 9)

Listing 4.10: Output of example loading a CSV URL using Pandas.

To learn more about the pandas.read_csv()® function you can refer to the API documen-
tation.

4.6 Summary

In this chapter you discovered how to load your machine learning data in Python. You learned
three specific techniques that you can use:

e Load CSV Files with the Python Standard Library.
e Load CSV Files with NumPy.
e Load CSV Files with Pandas.

Generally I recommend that you load your data with Pandas in practice and all subsequent
examples in this book will use this method.

8http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html

4.6. Summary 30

4.6.1 Next

Now that you know how to load your CSV data using Python it is time to start looking at it.
In the next lesson you will discover how to use simple descriptive statistics to better understand
your data.

Chapter 5

Understand Your Data With
Descriptive Statistics

You must understand your data in order to get the best results. In this chapter you will discover
7 recipes that you can use in Python to better understand your machine learning data. After
reading this lesson you will know how to:

1. Take a peek at your raw data.

2. Review the dimensions of your dataset.

3. Review the data types of attributes in your data.

4. Summarize the distribution of instances across classes in your dataset.
5. Summarize your data using descriptive statistics.

6. Understand the relationships in your data using correlations.

7. Review the skew of the distributions of each attribute.

Each recipe is demonstrated by loading the Pima Indians Diabetes classification dataset
from the UCI Machine Learning repository. Open your Python interactive environment and try
each recipe out in turn. Let’s get started.

5.1 Peek at Your Data

There is no substitute for looking at the raw data. Looking at the raw data can reveal insights
that you cannot get any other way. It can also plant seeds that may later grow into ideas on
how to better pre-process and handle the data for machine learning tasks. You can review the
first 20 rows of your data using the head () function on the Pandas DataFrame.

View first 20 rows

from pandas import read_csv

filename = "pima-indians-diabetes.data.csv"

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(filename, names=names)

peek = data.head(20)

31

5.2. Dimensions of Your Data 32

print (peek)

Listing 5.1: Example of reviewing the first few rows of data.

You can see that the first column lists the row number, which is handy for referencing a
specific observation.

preg plas pres skin test mass pedi age class

0 6 148 72 35 0 33.6 0.627 50 1
1 1 85 66 29 0 26.6 0.351 31 0
2 8 183 64 0 0 23.3 0.672 32 1
3 1 89 66 23 94 28.1 0.167 21 0
4 0 137 40 35 168 43.1 2.288 33 1
5 5 116 74 0 0 25.6 0.201 30 0
6 3 78 50 32 88 31.0 0.248 26 1
7 10 115 0 0 0 35.3 0.134 29 0
8 2 197 70 45 543 30.5 0.158 53 1
9 8 125 96 0 0 0.0 0.232 54 1
10 4 110 92 0 0 37.6 0.191 30 0
11 10 168 74 0 0 38.0 0.537 34 1
12 10 139 80 0 0 27.1 1.441 57 0
13 1 189 60 23 846 30.1 0.398 59 1
14 5 166 72 19 175 25.8 0.587 51 1
15 7 100 0 0 0 30.0 0.484 32 1
16 0 118 84 47 230 45.8 0.551 31 1
17 7 107 74 0 0 29.6 0.254 31 1
18 1 103 30 38 83 43.3 0.183 33 0
19 1 115 70 30 96 34.6 0.529 32 1

Listing 5.2: Output of reviewing the first few rows of data.

5.2 Dimensions of Your Data

You must have a very good handle on how much data you have, both in terms of rows and
columns.

e Too many rows and algorithms may take too long to train. Too few and perhaps you do
not have enough data to train the algorithms.

e Too many features and some algorithms can be distracted or suffer poor performance due
to the curse of dimensionality.

You can review the shape and size of your dataset by printing the shape property on the
Pandas DataFrame.

Dimensions of your data

from pandas import read_csv

filename = "pima-indians-diabetes.data.csv"

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(filename, names=names)

shape = data.shape

print (shape)

Listing 5.3: Example of reviewing the shape of the data.

5.3. Data Type For Each Attribute 33

The results are listed in rows then columns. You can see that the dataset has 768 rows and
9 columns.

(768, 9)

Listing 5.4: Output of reviewing the shape of the data.

5.3 Data Type For Each Attribute

The type of each attribute is important. Strings may need to be converted to floating point
values or integers to represent categorical or ordinal values. You can get an idea of the types of
attributes by peeking at the raw data, as above. You can also list the data types used by the
DataFrame to characterize each attribute using the dtypes property.

Data Types for Each Attribute

from pandas import read_csv

filename = "pima-indians-diabetes.data.csv"

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(filename, names=names)

types = data.dtypes

print (types)

Listing 5.5: Example of reviewing the data types of the data.

You can see that most of the attributes are integers and that mass and pedi are floating
point types.

preg int64
plas int64
pres int64
skin int64
test int64

mass float64
pedi float64
age int64
class int64
dtype: object

Listing 5.6: Output of reviewing the data types of the data.

5.4 Descriptive Statistics

Descriptive statistics can give you great insight into the shape of each attribute. Often you can
create more summaries than you have time to review. The describe() function on the Pandas
DataFrame lists 8 statistical properties of each attribute. They are:

e Count.
e Mean.

e Standard Deviation.

5.5. Class Distribution (Classification Only) 34

Minimum Value.

25th Percentile.

50th Percentile (Median).

75th Percentile.

Maximum Value.

Statistical Summary

from pandas import read_csv

from pandas import set_option

filename = "pima-indians-diabetes.data.csv"

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(filename, names=names)

set_option('display.width', 100)

set_option('precision', 3)

description = data.describe()

print(description)

Listing 5.7: Example of reviewing a statistical summary of the data.

You can see that you do get a lot of data. You will note some calls to pandas.set_option()
in the recipe to change the precision of the numbers and the preferred width of the output. This
is to make it more readable for this example. When describing your data this way, it is worth
taking some time and reviewing observations from the results. This might include the presence
of NA values for missing data or surprising distributions for attributes.

preg plas pres skin test mass pedi age class
count 768.000 768.000 768.000 768.000 768.000 768.000 768.000 768.000 768.000
mean 3.845 120.895 69.105 20.536 79.799 31.993 0.472 33.241 0.349
std 3.370 31.973 19.356 15.952 115.244 7.884 0.331 11.760 0.477
min 0.000 0.000 0.000 0.000 0.000 0.000 0.078 21.000 0.000
25% 1.000 99.000 62.000 0.000 0.000 27.300 0.244 24.000 0.000
50% 3.000 117.000 72.000 23.000 30.500 32.000 0.372 29.000 0.000
75% 6.000 140.250 80.000 32.000 127.250 36.600 0.626 41.000 1.000
max 17.000 199.000 122.000 99.000 846.000 67.100 2.420 81.000 1.000

Listing 5.8: Output of reviewing a statistical summary of the data.

5.5 Class Distribution (Classification Only)

On classification problems you need to know how balanced the class values are. Highly imbalanced
problems (a lot more observations for one class than another) are common and may need special
handling in the data preparation stage of your project. You can quickly get an idea of the
distribution of the class attribute in Pandas.

Class Distribution

from pandas import read_csv

filename = "pima-indians-diabetes.data.csv"

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(filename, names=names)

5.6. Correlations Between Attributes 35

class_counts = data.groupby('class').size()
print(class_counts)

Listing 5.9: Example of reviewing a class breakdown of the data.

You can see that there are nearly double the number of observations with class 0 (no onset
of diabetes) than there are with class 1 (onset of diabetes).

class
0 500
1 268

Listing 5.10: Output of reviewing a class breakdown of the data.

5.6 Correlations Between Attributes

Correlation refers to the relationship between two variables and how they may or may not
change together. The most common method for calculating correlation is Pearson’s Correlation
Coeflicient, that assumes a normal distribution of the attributes involved. A correlation of -1
or 1 shows a full negative or positive correlation respectively. Whereas a value of 0 shows no
correlation at all. Some machine learning algorithms like linear and logistic regression can suffer
poor performance if there are highly correlated attributes in your dataset. As such, it is a good
idea to review all of the pairwise correlations of the attributes in your dataset. You can use the
corr() function on the Pandas DataFrame to calculate a correlation matrix.

Pairwise Pearson correlations

from pandas import read_csv

from pandas import set_option

filename = "pima-indians-diabetes.data.csv"

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(filename, names=names)

set_option('display.width', 100)

set_option('precision', 3)

correlations = data.corr(method='pearson')

print(correlations)

Listing 5.11: Example of reviewing correlations of attributes in the data.

The matrix lists all attributes across the top and down the side, to give correlation between
all pairs of attributes (twice, because the matrix is symmetrical). You can see the diagonal
line through the matrix from the top left to bottom right corners of the matrix shows perfect
correlation of each attribute with itself.

preg plas pres skin test mass pedi age class

preg 1.000 0.129 0.141 -0.082 -0.074 0.018 -0.034 0.544 0.222
plas 0.129 1.000 0.153 0.057 0.331 0.221 0.137 0.264 0.467
pres 0.141 0.153 1.000 0.207 0.089 0.282 0.041 0.240 0.065
skin -0.082 0.057 0.207 1.000 0.437 0.393 0.184 -0.114 0.075
test -0.074 0.331 0.089 0.437 1.000 0.198 0.185 -0.042 0.131
mass 0.018 0.221 0.282 0.393 0.198 1.000 0.141 0.036 0.293
pedi -0.034 0.137 0.041 0.184 0.185 0.141 1.000 0.034 0.174
age 0.544 0.264 0.240 -0.114 -0.042 0.036 0.034 1.000 0.238
class 0.222 0.467 0.065 0.075 0.131 0.293 0.174 0.238 1.000

5.7. Skew of Univariate Distributions 36

Listing 5.12: Output of reviewing correlations of attributes in the data.

5.7 Skew of Univariate Distributions

Skew refers to a distribution that is assumed Gaussian (normal or bell curve) that is shifted or
squashed in one direction or another. Many machine learning algorithms assume a Gaussian
distribution. Knowing that an attribute has a skew may allow you to perform data preparation
to correct the skew and later improve the accuracy of your models. You can calculate the skew
of each attribute using the skew() function on the Pandas DataFrame.

Skew for each attribute

from pandas import read_csv

filename = "pima-indians-diabetes.data.csv"

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi',
data = read_csv(filename, names=names)

skew = data.skew()

print (skew)

'age', 'class']

Listing 5.13: Example of reviewing skew of attribute distributions in the data.

The skew result show a positive (right) or negative (left) skew. Values closer to zero show
less skew.

preg 0.901674
plas 0.173754
pres -1.843608
skin 0.109372
test 2.272251
mass -0.428982
pedi 1.919911
age 1.129597
class 0.635017

Listing 5.14: Output of reviewing skew of attribute distributions in the data.

5.8 Tips To Remember

This section gives you some tips to remember when reviewing your data using summary statistics.

e Review the numbers. Generating the summary statistics is not enough. Take a moment
to pause, read and really think about the numbers you are seeing.

e Ask why. Review your numbers and ask a lot of questions. How and why are you seeing
specific numbers. Think about how the numbers relate to the problem domain in general
and specific entities that observations relate to.

e Write down ideas. Write down your observations and ideas. Keep a small text file or
note pad and jot down all of the ideas for how variables may relate, for what numbers
mean, and ideas for techniques to try later. The things you write down now while the
data is fresh will be very valuable later when you are trying to think up new things to try.

5.9. Summary 37

5.9 Summary

In this chapter you discovered the importance of describing your dataset before you start work
on your machine learning project. You discovered 7 different ways to summarize your dataset
using Python and Pandas:

e Peeck At Your Data.

e Dimensions of Your Data.

Data Types.

Class Distribution.

Data Summary.

Correlations.

Skewness.

5.9.1 Next

Another excellent way that you can use to better understand your data is by generating plots
and charts. In the next lesson you will discover how you can visualize your data for machine
learning in Python.

Chapter 6

Understand Your Data With
Visualization

You must understand your data in order to get the best results from machine learning algorithms.
The fastest way to learn more about your data is to use data visualization. In this chapter you
will discover exactly how you can visualize your machine learning data in Python using Pandas.
Recipes in this chapter use the Pima Indians onset of diabetes dataset introduced in Chapter 4.
Let’s get started.

6.1 Univariate Plots

In this section we will look at three techniques that you can use to understand each attribute of
your dataset independently.

e Histograms.
e Density Plots.
e Box and Whisker Plots.

6.1.1 Histograms

A fast way to get an idea of the distribution of each attribute is to look at histograms. Histograms
group data into bins and provide you a count of the number of observations in each bin. From
the shape of the bins you can quickly get a feeling for whether an attribute is Gaussian, skewed
or even has an exponential distribution. It can also help you see possible outliers.

Univariate Histograms

from matplotlib import pyplot

from pandas import read_csv

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(filename, names=names)

data.hist()

pyplot.show()

Listing 6.1: Example of creating histogram plots.

38

6.1. Univariate Plots

39

We can see that perhaps the attributes age, pedi and test may have an exponential
distribution. We can also see that perhaps the mass and pres and plas attributes may have a
Gaussian or nearly Gaussian distribution. This is interesting because many machine learning
techniques assume a Gaussian univariate distribution on the input variables.

300 e S SPSS: ey ESS
250 R 250 |- 1
= = B -
100 .. 200 100 |- - |
50 g 100 Qe 50 [--g-- oo
0 O | | | | O.
20.30 40 50,60 70 80 0.0 02 0.4 06 0.8 1.0 0 10203040 5060 70
350 ——F0) _ o5g, PRES 250 Preg
300 |mw i B
et 200
200 150
150 100
100 i
50 _ 50 L
0 0
000510152025 0 50 100 150 200 02 46 8101214161
300 - Ff-re!s. T n 500 .
300
200
100

0 0 0]
0 20 40 60 80102040 0 20 40 60 80 100 010BP0OBOGOBO60VOBOBOO

Figure 6.1: Histograms of each attribute

6.1.2 Density Plots

Density plots are another way of getting a quick idea of the distribution of each attribute. The
plots look like an abstracted histogram with a smooth curve drawn through the top of each bin,
much like your eye tried to do with the histograms.

Univariate Density Plots

from matplotlib import pyplot

from pandas import read_csv

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',
data = read_csv(filename, names=names)

data.plot(kind='density', subplots=True, layout=(3,3), sharex=False)
pyplot.show()

'class']

Listing 6.2: Example of creating density plots.

6.1. Univariate Plots

We can see the distribution for each attribute is clearer than the histograms.

40

0.16 T T T T T |0. 14 T T T T 0- 30 T T T T T
0.14 | I |
olar = pregdtl?) opas| (|
20101 Eohos 2 020+ |
¥ 0.08 - 2 0bos L 2 0p15 — pres [4
o 0.06 - [Tl © L |
8 doal 8 ohoal & 0.p10
0.02 | 0.poz || — Plas 0,005 i |
0'001&56 5 1015202 03' 0010&506_51510&5'9005'3 0950 0 50 100150200
0.030 : : —g007 : 8%
0.025 | 0.D06 - — it 8.05 |- |
A est
=~0020L || /) >, 0.005 | —J0.04 | |
& I/ \ £°0.p04 | =
v 0.015 | " \ e] | 9 .03 | mass |
& 00104 |V 26002 | 8 0.02 |
0005} | [— Sklng,{;m L 0.01 |
0.000 P 5000 L .00
-50 0 50 100 150-500 O 500 1000 1500r~49200 204060 8010(120
2-0 T T T T T \-06 T T T T T
151 — pedi [$-05F — age [12.0} —_— class |
> >/0.04 | =151 |
@ 1.0} % 0.03 1 5
]] o|l.0F -
8 & 0.02} &
=1 0.01} 40.5 1
OO L I | L | (}DO | | | I | 00 | |
-2-10 1 2 3 4 -200 2040 60 8010120-0.5 0.0 05 1.0 1.5

Figure 6.2: Density plots of each attribute

6.1.3 Box and Whisker Plots

Another useful way to review the distribution of each attribute is to use Box and Whisker Plots
or boxplots for short. Boxplots summarize the distribution of each attribute, drawing a line for
the median (middle value) and a box around the 25th and 75th percentiles (the middle 50% of
the data). The whiskers give an idea of the spread of the data and dots outside of the whiskers
show candidate outlier values (values that are 1.5 times greater than the size of spread of the
middle 50% of the data).

Box and Whisker Plots

from matplotlib import pyplot
from pandas import read_csv
filename

= "pima-indians-diabetes.data.csv"
names ['preg', 'plas', 'pres', 'skin', 'test',
data read_csv(filename, names=names)
data.plot(kind='box', subplots=True, layout=(3,3), sharex=False, sharey=False)
pyplot.show()

= 'mass', 'pedi', 'age', 'class']

Listing 6.3: Example of creating box and whisker plots.

6.2. Multivariate Plots 41

We can see that the spread of attributes is quite different. Some like age, test and skin
appear quite skewed towards smaller values.

18 200 140 :
16 1 i 1] 120 |- |
2r - 1150 - 100 | F |
| L. 3
91 | oo} g 12T —]
ar 150} ¢ 40t + |
2L | 20 | R
0 0 : 0 '
100 ada 900 i 70 e
800 1601 |
o 4 : 1of £]
60 | T 8 i 140t |
B 13 e
o H oot l 120] i
20 200 1 =
100 | {101 1
0 . 5 = 0 .
skin test mass
2.5 : 90 . 1.0 -
80 | - |
201 1961 i 108 | |
15t 160 - | 10.6 + .
1.0} | 1 ig I : 10.4 | |
0.5 | % | g lo2 | :
0.0 : 20 0.0 e
pedi age class

Figure 6.3: Box and whisker plots of each attribute

6.2 Multivariate Plots

This section provides examples of two plots that show the interactions between multiple variables
in your dataset.

e Correlation Matrix Plot.

e Scatter Plot Matrix.

6.2.1 Correlation Matrix Plot

Correlation gives an indication of how related the changes are between two variables. If two
variables change in the same direction they are positively correlated. If they change in opposite
directions together (one goes up, one goes down), then they are negatively correlated. You can
calculate the correlation between each pair of attributes. This is called a correlation matrix. You
can then plot the correlation matrix and get an idea of which variables have a high correlation

6.2. Multivariate Plots 42

with each other. This is useful to know, because some machine learning algorithms like linear
and logistic regression can have poor performance if there are highly correlated input variables
in your data.

Correction Matrix Plot

from matplotlib import pyplot

from pandas import read_csv

import numpy

filename = 'pima-indians-diabetes.data.csv'
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(filename, names=names)
correlations = data.corr()

plot correlation matrix

fig = pyplot.figure()

ax = fig.add_subplot(111)

cax = ax.matshow(correlations, vmin=-1, vmax=1)
fig.colorbar(cax)

ticks = numpy.arange(0,9,1)
ax.set_xticks(ticks)

ax.set_yticks(ticks)

ax.set_xticklabels(names)
ax.set_yticklabels(names)

pyplot.show()

Listing 6.4: Example of creating a correlation matrix plot.

We can see that the matrix is symmetrical, i.e. the bottom left of the matrix is the same as
the top right. This is useful as we can see two different views on the same data in one plot. We
can also see that each variable is perfectly positively correlated with each other (as you would
have expected) in the diagonal line from top left to bottom right.

6.2. Multivariate Plots

preg plas pres skin test mass pedi

age class

T T T

preg
plas
pres
skin
test
mass
pedi
age £

class

T T I T

Figure 6.4: Correlation matrix plot.

43

The example is not generic in that it specifies the names for the attributes along the axes as
well as the number of ticks. This recipe cam be made more generic by removing these aspects

as follows:

Correction Matrix Plot (generic)

from matplotlib import pyplot

from pandas import read_csv

import numpy

filename = 'pima-indians-diabetes.data.csv'
names = ['preg', 'plas', 'pres', 'skin', 'test'
data = read_csv(filename, names=names)
correlations = data.corr()

plot correlation matrix

fig = pyplot.figure()

ax = fig.add_subplot(111)

cax = ax.matshow(correlations, vmin=-1, vmax=1)
fig.colorbar(cax)

pyplot.show()

, 'mass', 'pedi', '

age',

'class']

Listing 6.5: Example of creating a generic correlation matrix plot.

Generating the plot, you can see that it gives the same information although making it a
little harder to see what attributes are correlated by name. Use this generic plot as a first cut

6.2. Multivariate Plots 44

to understand the correlations in your dataset and customize it like the first example in order
to read off more specific data if needed.

1.0

0.8

0.6

0.4

0.2

0.0

Figure 6.5: Generic Correlation matrix plot.

6.2.2 Scatter Plot Matrix

A scatter plot shows the relationship between two variables as dots in two dimensions, one
axis for each attribute. You can create a scatter plot for each pair of attributes in your data.
Drawing all these scatter plots together is called a scatter plot matrix. Scatter plots are useful
for spotting structured relationships between variables, like whether you could summarize the
relationship between two variables with a line. Attributes with structured relationships may
also be correlated and good candidates for removal from your dataset.

Scatterplot Matrix

from matplotlib import pyplot

from pandas import read_csv

from pandas.tools.plotting import scatter_matrix

filename = "pima-indians-diabetes.data.csv"

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(filename, names=names)
scatter_matrix(data)

pyplot.show()

6.3. Summary 45

Listing 6.6: Example of creating a scatter plot matrix.

Like the Correlation Matrix Plot above, the scatter plot matrix is symmetrical. This is
useful to look at the pairwise relationships from different perspectives. Because there is little
point of drawing a scatter plot of each variable with itself, the diagonal shows histograms of
each attribute.

150 |

(]
E@gcﬂ%

—
o
[=1=T1-.1

e
[=1=]
"

LA
Lo e e L o N TTTT0 e i o o o]
3
.
o -

BEBSZES G in o

(=10

ooooo
S P

class age pedi mass est skin pres plas preg

Figure 6.6: Scatter plot matrix of the data.

6.3 Summary

In this chapter you discovered a number of ways that you can better understand your machine
learning data in Python using Pandas. Specifically, you learned how to plot your data using:

e [istograms.

Density Plots.
Box and Whisker Plots.

Correlation Matrix Plot.

Scatter Plot Matrix.

6.3. Summary 46

6.3.1 Next

Now that you know two ways to learn more about your data, you are ready to start manipulating
it. In the next lesson you will discover how you can prepare your data to best expose the
structure of your problem to modeling algorithms.

Chapter 7

Prepare Your Data For Machine
Learning

Many machine learning algorithms make assumptions about your data. It is often a very good
idea to prepare your data in such way to best expose the structure of the problem to the machine
learning algorithms that you intend to use. In this chapter you will discover how to prepare
your data for machine learning in Python using scikit-learn. After completing this lesson you
will know how to:

1. Rescale data.
2. Standardize data.
3. Normalize data.

4. Binarize data.

Let’s get started.

7.1 Need For Data Pre-processing

You almost always need to pre-process your data. It is a required step. A difficulty is that
different algorithms make different assumptions about your data and may require different
transforms. Further, when you follow all of the rules and prepare your data, sometimes algorithms
can deliver better results without pre-processing.

Generally, I would recommend creating many different views and transforms of your data,
then exercise a handful of algorithms on each view of your dataset. This will help you to flush
out which data transforms might be better at exposing the structure of your problem in general.

7.2 Data Transforms

In this lesson you will work through 4 different data pre-processing recipes for machine learning.
The Pima Indian diabetes dataset is used in each recipe. Each recipe follows the same structure:

e [oad the dataset from a URL.

47

7.3. Rescale Data 48

e Split the dataset into the input and output variables for machine learning.
e Apply a pre-processing transform to the input variables.

e Summarize the data to show the change.

The scikit-learn library provides two standard idioms for transforming data. Each are useful
in different circumstances. The transforms are calculated in such a way that they can be applied
to your training data and any samples of data you may have in the future. The scikit-learn
documentation has some information on how to use various different pre-processing methods:

e Fit and Multiple Transform.

e Combined Fit-And-Transform.

The Fit and Multiple Transform method is the preferred approach. You call the £it()
function to prepare the parameters of the transform once on your data. Then later you can use
the transform() function on the same data to prepare it for modeling and again on the test or
validation dataset or new data that you may see in the future. The Combined Fit-And-Transform
is a convenience that you can use for one off tasks. This might be useful if you are interested
in plotting or summarizing the transformed data. You can review the preprocess API in
scikit-learn here!.

7.3 Rescale Data

When your data is comprised of attributes with varying scales, many machine learning algorithms
can benefit from rescaling the attributes to all have the same scale. Often this is referred to
as normalization and attributes are often rescaled into the range between 0 and 1. This is
useful for optimization algorithms used in the core of machine learning algorithms like gradient
descent. It is also useful for algorithms that weight inputs like regression and neural networks
and algorithms that use distance measures like k-Nearest Neighbors. You can rescale your data
using scikit-learn using the MinMaxScaler class®.

Rescale data (between O and 1)

from pandas import read_csv

from numpy import set_printoptions

from sklearn.preprocessing import MinMaxScaler
filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi',
dataframe = read_csv(filename, names=names)

array = dataframe.values

separate array into input and output components
X = arrayl[:,0:8]

Y = arrayl:,8]

scaler = MinMaxScaler(feature_range=(0, 1))
rescaledX = scaler.fit_transform(X)

summarize transformed data
set_printoptions(precision=3)

'age', 'class']

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing
2http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

7.4. Standardize Data 49

|print(resca1edX[0:5,:])

Listing 7.1: Example of rescaling data.

After rescaling you can see that all of the values are in the range between 0 and 1.

[[0.3563 0.744 0.59 0.354 O 0.501 0.234 0.483]
[0.059 0.427 0.541 0.293 0. 0.396 0.117 0.167]
2 0.525 0 0. 0.347 0.254 0.183]
0. 0
0. 0

©

47 0.541 0.232 111 0.419 0.038]

[o. 0.
[0.059 0. .
[0. 0.688 0.328 0.354 199 0.642 0.944 0.2 1]

S

Listing 7.2: Output of rescaling data.

7.4 Standardize Data

Standardization is a useful technique to transform attributes with a Gaussian distribution and
differing means and standard deviations to a standard Gaussian distribution with a mean of
0 and a standard deviation of 1. It is most suitable for techniques that assume a Gaussian
distribution in the input variables and work better with rescaled data, such as linear regression,
logistic regression and linear discriminate analysis. You can standardize data using scikit-learn
with the StandardScaler class®.

Standardize data (0 mean, 1 stdev)

from sklearn.preprocessing import StandardScaler
from pandas import read_csv

from numpy import set_printoptions

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
dataframe = read_csv(filename, names=names)

array = dataframe.values

separate array into input and output components
X = arrayl[:,0:8]

Y = arrayl:,8]

scaler = StandardScaler().fit(X)

rescaledX = scaler.transform(X)

summarize transformed data
set_printoptions(precision=3)
print(rescaledX[0:5,:])

Listing 7.3: Example of standardizing data.

The values for each attribute now have a mean value of 0 and a standard deviation of 1.

[[0.64 0.848 0.15 0.907 -0.693 0.204 0.468 1.426]
[-0.845 -1.123 -0.161 0.531 -0.693 -0.684 -0.365 -0.191]
[1.234 1.944 -0.264 -1.288 -0.693 -1.103 0.604 -0.106]
[-0.845 -0.998 -0.161 0.155 0.123 -0.494 -0.921 -1.042]
[-1.142 0.504 -1.505 0.907 0.766 1.41 5.485 -0.02 1]

Listing 7.4: Output of rescaling data.

3http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.
html

7.5. Normalize Data 50

7.5 Normalize Data

Normalizing in scikit-learn refers to rescaling each observation (row) to have a length of 1 (called
a unit norm or a vector with the length of 1 in linear algebra). This pre-processing method
can be useful for sparse datasets (lots of zeros) with attributes of varying scales when using
algorithms that weight input values such as neural networks and algorithms that use distance
measures such as k-Nearest Neighbors. You can normalize data in Python with scikit-learn
using the Normalizer class®.

Normalize data (length of 1)

from sklearn.preprocessing import Normalizer

from pandas import read_csv

from numpy import set_printoptions

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
dataframe = read_csv(filename, names=names)

array = dataframe.values

separate array into input and output components
X = arrayl[:,0:8]

Y = arrayl:,8]

scaler = Normalizer().fit(X)

normalizedX = scaler.transform(X)

summarize transformed data
set_printoptions(precision=3)
print(normalizedX[0:5,:])

Listing 7.5: Example of normalizing data.

The rows are normalized to length 1.

[[0.034 0.828 0.403 0.196 O. 0.188 0.004 0.28]
[0.008 0.716 0.556 0.244 O. 0.224 0.003 0.261]
[0.04 0.924 0.323 0. 0. 0.118 0.003 0.162]
[0.007 0.588 0.436 0.152 0.622 0.186 0.001 0.139]
[0. 0.596 0.174 0.152 0.731 0.188 0.01 0.144]]

Listing 7.6: Output of normalizing data.

7.6 Binarize Data (Make Binary)

You can transform your data using a binary threshold. All values above the threshold are
marked 1 and all equal to or below are marked as 0. This is called binarizing your data or
thresholding your data. It can be useful when you have probabilities that you want to make crisp
values. It is also useful when feature engineering and you want to add new features that indicate
something meaningful. You can create new binary attributes in Python using scikit-learn with
the Binarizer class’.

binarization
from sklearn.preprocessing import Binarizer
from pandas import read_csv

4http://scikit—learn.org/stable/modules/generated/sklearn.preprocessing.Normalizer.html
5http://scikit—learn.org/stable/modules/generated/sklearn.preprocessing.Binarizer.html

7.7. Summary 51

from numpy import set_printoptions

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
dataframe = read_csv(filename, names=names)

array = dataframe.values

separate array into input and output components
X = arrayl[:,0:8]

Y = arrayl:,8]

binarizer = Binarizer(threshold=0.0).fit(X)
binaryX = binarizer.transform(X)

summarize transformed data

set_printoptions(precision=3)
print (binaryX[0:5,:])

Listing 7.7: Example of binarizing data.

You can see that all values equal or less than 0 are marked 0 and all of those above 0 are
marked 1.

C

L B e B s B B e |
O e
e
e rsr
bR oRRE
PR oee
I
e
=
Ll

1]

Listing 7.8: Output of normalizing data.

7.7 Summary

In this chapter you discovered how you can prepare your data for machine learning in Python
using scikit-learn. You now have recipes to:

e Rescale data.
e Standardize data.
e Normalize data.

e Binarize data.

7.7.1 Next

You now know how to transform your data to best expose the structure of your problem to the
modeling algorithms. In the next lesson you will discover how to select the features of your data
that are most relevant to making predictions.

