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Preface
Welcome to Practical Python Programming for IoT. The focus of this book is
centered around Raspberry Pis, electronics, computer networking, the Python
programming language, and how we combine all these elements to build
complex and multifaceted IoT projects.

We will be looking at these elements from many angles, comparing and
contrasting different options, and discussing the how and why behind the
electronic circuits we build. By the time you reach the end of this book, you
will have a broad toolkit comprised of electronic interfacing code examples,
networking code examples, and electronic circuit examples that you can
borrow from, adapt, and reengineer for your own needs and projects.

I look forward to joining you on this IoT journey.



Who this book is for
This book is for application developers, IoT professionals, and hobbyists
interested in building IoT applications leveraging the Python programming
language. It is written with mid-to senior-level software engineers in mind who
are experienced in desktop, web, and mobile development, but who have little
to no exposure to electronics, physical computing, and IoT.



What this book covers
Chapter 1, Setting Up Your Development Environment, explores the Python
ecosystem in the context of the Raspberry Pi OS and teaches you how to
correctly set up a Python development project for success. You will also learn
alternative ways of starting Python programs and how to configure your
Raspberry Pi for GPIO interfacing.

Chapter 2, Getting Started with Python and IoT, teaches you the basics of
electronics and GPIO interfacing with Python. You will build and experiment
with simple electronic circuits that are controlled using Python, and combine
this learning to build a simple yet complete internet-controllable IoT
application from the ground up using the dweet.io platform.

Chapter 3, Networking with RESTful APIs and Web Sockets Using Flask,
explores how to build network servers in Python using two approaches –
RESTful APIs and Web Sockets. You will learn how to use these servers in
conjunction with Python and an HTML/JavaScript user interface to control
electronic circuits over a network from a web browser.

Chapter 4, Networking with MQTT, Python, and the Mosquitto MQTT Broker,
teaches networking approaches using Message Queue Telemetry Transport, a
popular choice for distributed IoT applications. You will learn how to use
MQTT in conjunction with Python and an HTML/JavaScript user interface to
control electronic circuits over a network and from a web browser.

Chapter 5, Connecting Your Raspberry Pi to the Physical World, explores
different Python-based software options and techniques used to interface and
control electronics using a Raspberry Pi's GPIO pins. You will also build and
learn to use an ADS1115 analog-to-digital converter module to expand your
Raspberry Pi's native interfacing options, and be introduced to Pulse Width
Modulation (PWM), an important electronic and interfacing concept that
you'll be using in later chapters.



Chapter 6, Electronics 101 for the Software Engineer, teaches you core
electronic concepts and fundamentals. You will learn the essential how and
why behind common electronic and interfacing circuits and how they are used
practically to correctly and safely interface sensors and actuators to your
Raspberry Pi. You will also learn the differences between digital and analog
electronics and how each applies to and influences interfacing circuit
requirements. Many of the fundamentals you learn about in this chapter are
seen applied practically in subsequent chapters as we work with different
electronic components and modules. 

Chapter 7, Turning Things On and Off, teaches you how to use optocouplers,
MOSFET transistors, and relays to turn other circuits on and off using your
Raspberry Pi and Python. You will also learn about circuit loads, how they are
measured, and how this influences the choice and use of optocouplers,
MOSFET transistors, and relays in circuits.

Chapter 8, Lights, Indicators, and Displaying Information, teaches you how to
use an APA102 LED lighting strip, RGB LEDs, OLED displays, and buzzers
in conjunction with Python to create visual and auditable orientated circuits
and applications.

Chapter 9, Measuring Temperature, Humidity, and Light Levels, teaches you
how to measure common environmental attributes with your Raspberry Pi and
Python. You will build a circuit using a DHT11/22 temperature and humidity
sensor and learn about and use Light-Dependent-Resistors (LDRs) to detect
the presence or absence of light. In this chapter, you will also deepen your
practical understanding and experience of analog electronics, and apply the
basic principle to build a moisture detection circuit and application.

Chapter 10, Movement with Servos, Motors, and Steppers, teaches you how to
create movement using popular mechanical devices together with your
Raspberry Pi and Python. You will learn how to control a servo using PWM to
create angular movement, use an H-bridge IC circuit together with a motor to
control its speed and direction of rotation. Plus, you will learn how to adapt
the H-bridge IC circuit for use with a stepper motor for those projects where
you need precise control over movement.



Chapter 11, Measuring Distance and Detecting Movement, teaches you the
principles behind distance measurements using an HC-SR04 ultrasonic
distance sensor and how to use an HC-SR501 PIR sensor to detect movement
on a macro scale. You will also learn how to use both a ratiometric and switch-
type Hall-effect sensor to detect movement and measure relative distance on
micro scales.

Chapter 12, Advanced IoT Programming Concepts – Threads, AsyncIO, and
Event Loops, is an advanced programming chapter that looks at alternative
approaches to structuring complex Python programs. You will learn about
Python threading, asynchronous I/O, classic event loops, and publisher-
subscriber patterns, all within the context of electronic interfacing. By the end
of the chapter, you will have experimented with and understood four
functionally equivalent applications that are written in four very different
ways.

Chapter 13, IoT Visualization and Automation Platforms, is a journey into the
world of IoT-related online services and integration. You will be creating two
environmental-monitoring applications based on the DHT11/22 temperature
and humidity circuit from Chapter 9, Measuring Temperature, Humidity, and
Light Levels. First, you will leverage your MQTT understanding from Chapter
4, Networking with MQTT, Python, and the Mosquitto MQTT Broker, to create
an online dashboard at ThingSpeak.com to display and graph both temperature
and humidity data. Then, you will also apply RESTful API concepts from Chapt
er 4, Networking with MQTT, Python, and the Mosquitto MQTT Broker, and
build an If-This-Then-That (IFTTT.com) workflow Applet that sends you an
email whenever the temperature rises above or falls below a certain point.

Chapter 14, Tying It All Together – An IoT Christmas Tree, pulls together many
of the themes and concepts you have learned about in earlier chapters with a
multifaceted example centered around an internet-connected Christmas tree.
From an electronics perspective, you will revisit the APA102 LED strip from C
hapter 8, Lights, Indicators, and Displaying Information (this will be the
Christmas tree lights), and servos from Chapter 10, Movement with Servos,
Motors, and Steppers (this is used to provide a mechanism to shake or rock the
tree). From a networking perspective, you will revisit dweet.io from Chapter 2,
Getting Started with Python and IoT; RESTful-APIs from Chapter



3, Networking with RESTful APIs and Web Sockets Using Flask;
and MQTT from Chapter 4, Networking with MQTT, Python, and the Mosquitto
MQTT Broker, and learn how to combine techniques to achieve complex
integrations that need to bridge different technologies. Finally, you will revisit
IFTTT from Chapter 13, IoT Visualization and Automation Platforms, and create
two Applets that let you control your tree's lights and make the tree shake or
rock over the internet. These three Applets include email control, and voice-
activated control using Google Assistant.

To get the most out of this book
The following headings provide an overview of the hardware, software,
electronics, and peripherals you will require to successfully work through and
complete the exercises found in this book.

Hardware and software: All of the exercises and code in this book were
built and tested on the following hardware and software versions:

Raspberry Pi 4 Model B
Raspberry Pi OS Buster (with desktop and recommended software)
Python version 3.5

It will be my assumption that you will be using an equivalent setup;
however, it is reasonable to expect that the code examples should work
without modification on a Raspberry Pi 3 Model B or a different
version of Raspbian OS or Raspberry Pi OS as long as your Python
version is 3.5 or higher.

If you are not too sure about your Python version, don't worry. One of
our first tasks in Chapter 1, Setting Up Your Development Environment,
will be understanding Python on your Raspberry Pi and working out
which versions are available.

Electronic Parts and Equipment: We will be using many electronic
parts throughout this book. At the start of each chapter, I list the specific
parts and quantities you will require for the chapter's examples. In



addition to the parts listed, an electronic breadboard and a mixture of
jumper/dupont cables will also be required.

For your convenience, a table cataloging all the electronic parts used
throughout the book, the chapters where they are used, plus the
minimum quantities you will require follows. If you are new to buying
electronic parts, you'll also find tips to help get you started after the
table:

Part Name Minimum
Quantity Description / Notes Used in

Chapter(s)

Red LED 2 *

5mm red LED.
Different-colored
LEDs can have
different electrical
characters. Most of
our examples in the
book will assume a
red LED.

2, 3, 4, 5,
6, 7, 9, 12,
13

15Ω Resistor 2 *

Color bands (4-band
resistor) will be
brown, green, black,
silver/gold

8

200Ω Resistor 2 *

Color bands (4-band
resistor) will be red,
black brown,
silver/gold

2, 3, 4, 5,
6, 8, 9, 12,
13

1kΩ Resistor 2 *

Color bands (4-band
resistor) will
be brown, brown,
red, silver/gold

6, 7, 9, 8,
11

2kΩ Resistor 2 *
Color bands (4-band
resistor) will be red,
black, red, silver/gold

6, 11

10kΩ Resistor 1 * Color bands (4-band 9, 13



resistor) will be
brown, black, orange,
silver/gold

51kΩ Resistor 1 *

Color bands (4-band
resistor) will be
green, brown, orange,
silver/gold

6

100kΩ Resistor 1 *

Color bands (4-band
resistor) will
be brown, black,
yellow, silver/gold

7, 8, 9

Momentary Push-
Button Switch 1

To source a push-
button switch that is
breadboard friendly,
try searching for
a large tactile switch.

1, 6, 12

10kΩ Linear
Potentiometers 2

Larger
potentiometers that
you can adjust with
your fingers will be
easier to work with in
the book's examples
than small
potentiometers that
will require a
screwdriver to adjust.
Make sure you have
linear potentiometers
(not logarithmic).

5, 6, 12

2N7000 MOSFET 1 *
This is a logic-level
compatible MOSFET
transistor.

7, 8

FQP30N06L Power 1 * Optional. When 7



MOSFET purchasing, make
sure the part number
ends with L,
indicating that it is a
logic-level
compatible MOSFET
(otherwise, it will not
reliably work your
Raspberry Pi).

PC817 Opto-Coupler 1 * Also known as an
opto-isolator. 7

SDR-5VDC-SL-C
Relay 1

These relays are very
popular and easy to
come by; however,
they are not
breadboard friendly.
You will need to
solder terminals or
wires to them so you
can plug them into
your breadboard.

7

1N4001 Diode 1 *

We will be using a
diode in the role of a
fly-back suppression
diode to protect other
electrical components
from voltage spikes.

7, 8

Size R130  5-volt DC
Hobby Motor

2 Size R130 is just a
suggestion. What we
need are 5-volt
compatible DC
motors with a stall
current (ideally) less
than 800 mA. While
these motors are easy
to come by on

7, 10



auction sites, their
current and operating
currents can be
poorly documented
so it can be a gamble
as to what you get. Ch
apter 7, Turning
Things On and Off,
will take you through
an exercise to
measure
the operating currents
of your motors.

RGBLED, Common
Cathode type 1 *

This is an LED that is
capable of making
different colors.

8

Passive Buzzer 1
A passive buzzer that
will work with 5
volts.

8

SSD1306 OLED
Display 1

This is a small
monochrome pixel-
based display.

8

APA102 RGBLED
Strip

1 This is a strip of
addressable APA102
RGBLEDs. You will
just need the LED
strip, not a power
supply or a remote
control for our
exercises. Be careful
to make sure it is the
APA102 LEDs that
you are purchasing as
there are different
(and incompatible)

8, 14



types of addressable
LEDs available.

DHT11 or DHT22
Temperature/Humidity
Sensor

1

The DHT11 and
DHT22 are
interchangeable. The
DHT22 is slightly
more expensive but
offers more accuracy
and can measure sub-
zero temperatures.

9, 13

LDR 1 * Light-Dependent-
Resistor 9

MG90S Hobby Servo 1

This is a suggestion.
Any 5-volt hobby
servo with 3 wires (+,
GND, Signal) should
be suitable.

10, 14

L293D H-Bridge IC 1 *

Make sure the part
number you purchase
ends in D, meaning
the IC includes
embedded fly-back
suppression diodes.

10

28BYJ-48 Stepper
Motor 1

Make sure you
purchase the 5-volt
stepper motor variety,
with a 1:64 gearing
ratio.

10

HC-SR501 PIR
Sensor 1

A PIR sensor detects
movement. It works
on heat, so it can
detect the presence of
people and animals.

11

HC-SR04 Ultrasonic
Distance Sensor

1 An Ultrasonic
Distance Sensor

11



estimates distances
using sound waves.

A3144 Hall-Effect
Sensor 1 *

This is a non-latching
switch-type Hall-
effect sensor that
turns on in the
presence of a
magnetic field.

11

AH3503 Hall-Effect
Sensor 1 *

This is a ratiometric-
type Hall-effect
sensor that can detect
how close (relatively)
it is to a magnetic
field.

11

Magnet 1

A small magnet is
required for use with
the Hall-effect
sensors.

11

ADS1115 Analog-to-
Digital
(ADC) Converter
Breakout Module

1

This module will
allow us to interface
analog components
with our Raspberry
Pi.

5, 9, 12

Logic Level
Shifter/Converter
Breakout Module

1

This module will
allow us to interface
5-volt electrical
components with our
Raspberry Pi. Search
for a Logic Level
Shifter/Converter
Breakout Module and
look for a bi-
directional
(preferred) module
when 4 or 8 channels.

6, 8, 14



Breadboard 1 All our electronic
examples will be
built on a
breadboard. I
recommend
purchasing two full-
size breadboards and
joining them together
– more breadboard
working areas will
make building
circuits easier.

2 - 14

Dupont / Jumper
Cables 3 sets *

These cables are used
to wire components
together on your
breadboard.
I recommend
purchasing sets of
male-to-male, male-
to-female, and
female-to-female
types.

2 - 14

Raspberry Pi GPIO
Breadboard Breakout 1

This is optional,
however, it will make
it easier to interface
your Raspberry Pi
GPIO pins with your
breadboard.

2 - 14

Digital Multimeter 1

As a guide, a digital
multimeter in the
price range of $30-50
USD should be more
than suitable. Avoid
the very-low and
cheapest multi-
meters.

6, 7



External Power
Supply

2 Some of the circuits
in this book will
require more power
than we can expect
our Raspberry Pi to
provide. As a
minimum source, a
3.3/5-volt
breadboard-
compatible power
supply capable of
outputting 1 amp will
be suitable. You
might also like to
research lab power
supplies as a more
capable and general
alternative.

7, 8, 9, 10,
14

Soldering Iron and
Solder 1

There will be cases
where you need to
solder wires and
terminals onto
components – for
example, it is highly
likely that you will
need to solder
terminal legs on to
the ADS1115 and
logic level
converter/shifter
modules that you
purchase. You will
also need to solder
terminals or wires
onto your SDR-
5VDC-SL-C relay so
you can plug it into
your breadboard.



*  Spares recommended. These are components that can be damaged if
incorrectly connected or powered or can physically break with use (for
example, legs breaking off).

These parts have been selected due to their low price points, and their general
availability on websites such as eBay.com, Bangood.com, AliExpress.com,
and electronics retailers.

Before making your purchases, please consider the following:

The Minimum Quantity column is what you will need for the exercises
in this book, however, it's highly recommended that you purchase spares,
especially of LEDs, resistors, and MOSFETs as these components are
easily damaged.
You will find that many components will need to be purchased in bulk
lots.
Search around for Electronic Component Starter Kits and compare what
they include against the parts listed in the table. You may be able to
purchase many of the parts together in a single (and discounted)
transaction.
The many available plug-and-play Sensor Module Starter Kits that are
available will, for the most part, not be compatible with the circuit and
code exercises presented throughout this book. The depth of our
electronic and code examples means we will need to work with core
electrical components. After completing this book, however, you will be
in a great position to understand how these plug-and-play sensor modules
are built and work!

If you are using the digital version of this book, we advise you to type the
code yourself or access the code via the GitHub repository (link available
in the next section). Doing so will help you avoid any potential errors
related to the copying and pasting of code.

Download the example code files

You can download the example code files for this book from your account at ww
w.packt.com. If you purchased this book elsewhere, you can visit www.packtpub.com/s
upport and register to have the files emailed directly to you.

http://www.packt.com/
https://www.packtpub.com/support


You can download the code files by following these steps:

1. Log in or register at www.packt.com.
2. Select the Support tab.
3. Click on Code Downloads.
4. Enter the name of the book in the Search box and follow the onscreen

instructions.

Once the file is downloaded, please make sure that you unzip or extract the
folder using the latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/Pack
tPublishing/Practical-Python-Programming-for-IoT. In case there's an update to the
code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos
available at https://github.com/PacktPublishing/. Check them out!

Code in Action

Code in Action videos for this book can be viewed at https://bit.ly/316OvNu

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: https://static.packt-cdn.com/download
s/9781838982461_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

http://www.packt.com/
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/
https://bit.ly/316OvNu
https://static.packt-cdn.com/downloads/9781838982461_ColorImages.pdf


CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. Here is an example: "Let's check for the availability of GPIO
packages using gpio_pkg_check.py and pip."

A block of code is set as follows:

# Global Variables

...

BROKER_HOST = "localhost"   # (2)

BROKER_PORT = 1883

CLIENT_ID = "LEDClient"     # (3)

TOPIC = "led"               # (4)

client = None # MQTT client instance. See init_mqtt()   # (5)

...

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

# Global Variables

...

BROKER_HOST = "localhost"   # (2)

BROKER_PORT = 1883

CLIENT_ID = "LEDClient"     # (3)

TOPIC = "led"               # (4)

client = None # MQTT client instance. See init_mqtt()   # (5)

...

Any command-line input or output is written as follows:

$ python --version

Python 2.7.16

Bold: Indicates a new term, an important word, or words that you see
onscreen. For example, words in menus or dialog boxes appear in the text like
this. Here is an example: "From your Raspbian desktop, navigate to
the Raspberry menu | Preferences | Raspberry Pi Configuration."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch



Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book,
mention the book title in the subject of your message and email us at
customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we
would be grateful if you would report this to us. Please visit www.packtpub.com/sup
port/errata, selecting your book, clicking on the Errata Submission Form link,
and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at copyright@packt.com with a link to
the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please visit authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see
and use your unbiased opinion to make purchase decisions, we at Packt can
understand what you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/


Section 1: Programming with Python
and the Raspberry Pi

In this first section of our journey, our primary focus will be on the Internet
part of IoT.

We'll start by learning how to properly set up your Python development
environment, before exploring and playing with a variety of networking
techniques using Python to build network- and internet-connected services
and applications. We will also create simple web user interfaces that work
with the techniques and examples we will learn about.

However, I am sure if you are reading this book you are eager to jump right
in, learn about and play with electronics, and start building and tinkering. I
know I would be! So, Chapter 2, Getting Started with Python and IoT is
dedicated to building a simple internet-connected IoT project from the
ground up – electronics and all – so that we have a reference example for
later chapters (and something to tinker with!).

Let's get started!

This section comprises the following chapters:

Chapter 1, Setting Up Your Development Environment
Chapter 2, Getting Started with Python and IoT
Chapter 3, Networking with RESTful APIs and Web Sockets using Flask
Chapter 4, Networking with MQTT, Python, and the Mosquitto MQTT
Broker



Setting Up your Development
Environment

An important yet often overlooked aspect of Python programming is how to
correctly set up and maintain a Python project and its runtime environment.
It is often overlooked because it presents as an optional step for the Python
ecosystem. And while this might be fine for learning Python language
fundamentals, it can quickly become a problem for more complex
projects where we need to maintain separate code bases and dependencies
to ensure our projects do not interfere with one another, or worse as we will
discuss, break operating system tools and utilities.

So, before we jump into IoT code and examples in later chapters, it is so
very important for us to cover the steps required to set up a Python project
and its run time environment.

In this chapter, we will cover the following topics:

Understanding your Python installation
Setting up a Python virtual environment
Installing Python GPIO packages with pip
Alternative methods of executing a Python script
Raspberry Pi GPIO interface configuration

Technical requirements
To perform the hands-0n exercises in this chapter, you will need the
following:

Raspberry Pi 4 Model B
Raspbian OS Buster (with desktop and recommended software)
Minimum Python version 3.5



These requirements are what the code examples in this book are based on.
It's reasonable to expect that the code examples should work without
modification on a Raspberry Pi 3 Model B or a different version of
Raspbian OS as long as your Python version is 3.5 or higher.

The full source code for this book can be found on GitHub at the following
URL: https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT. We
will clone this repository shortly when we come to the Setting up a Python
virtual environment section.

Understanding your
Python installation
In this section, we will find out which versions of Python you have installed
on your Raspberry Pi. As we will discover, there are two versions of Python
that come pre-installed on Raspbian OS. Unix-based operating systems
(such as Raspbian OS) typically have Python version 2 and 3 pre-installed
because there are operating-system-level utilities built with Python.

To find out which versions of Python you have on your Raspberry Pi,
follow these steps:

1. Open a new Terminal and execute the python --version command:

$ python --version

Python 2.7.16

In my example, we see that Python version 2.7.16 has been
installed.

2. Next, run the python3 --version command:

$ python3 --version

Python 3.7.3

https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT


In my example, we see that the second version of Python (that
is, python3, with the 3) that is installed is version 3.7.3.

Don't worry if the minor versions (the numbers .7.16 after the 2 and .7.3
after 3) are not the same; it is the major versions 2 and 3 that are of interest.
Python 2 is a legacy version of Python, while Python 3 is the current and
supported version of Python at the time of writing. When we are starting a
new Python development, we will practically always use Python 3 unless
there are legacy issues we need to contend with.

Python 2 officially became end-of-life in January 2020. It is no longer maintained and
will not receive any further enhancements, bug fixes, or security patches.

If you are an experienced Python programmer, you may be able to discern
whether a script is written for Python 2 or 3, but it's not always obvious by
simply looking at a piece of code. Many new-to-Python developers
experience frustrations by mixing up Python programs and code fragments
that are meant for different Python versions. Always remember that code
written for Python 2 is not guaranteed to be upward-comparable with
Python 3 without modification.

A quick tip I can share to visually help to determine which Python version a
code fragment is written for (if the programmer has not made it clear in the
code comments) is to look for a print statement.

If you look at the following example, you will see that there are two print
statements. The first print statement without the parentheses is a give-away
that it will only work with Python 2:

print "Hello"  # No parentheses - This only works in Python 2, a dead give-away 

that this script is for Python 2.

print("Hello") # With parentheses - this will work in Python 2 and Python 3

Of course, you can always run the code against both Python 2 and 3 and see
what happens.

We have now seen that there are two Python versions available by default
on Raspbian OS, and made mention that there are system-level utilities that



are written in Python that reply on these versions. As Python developers,
we must take care not to disrupt the global Python installations as this can
potentially break system-level utilities.

We will now turn our attention to a very important Python concept, the
Python virtual environment, which is the way we isolate or sandbox our
own Python projects from the global installation.

Setting up a Python virtual
environment
In this section, we will discuss how Python interacts with your operating
system installation and cover the steps necessary to set up and configure a
Python development environment. In addition, as part of our setup process,
we will clone the GitHub repository that contains all of the code (organized
by chapter) for this book.

By default, Python and its package management tool, pip, operate globally
at the system level and can create some confusion for Python beginners
because this global default is in contrast to many other language ecosystems
that operate locally on a project folder level by default. Unwearyingly
working and making changes to the global Python environment can break
Python-based system-level tools, and remedying the situation can become a
major headache.

As a Python developer, we use Python virtual environments to sandbox our
Python projects so they will not adversely interfere with system-level
Python utilities or other Python projects.

In this book, we will be using a virtual environment tool known as venv,
which comes bundled as a built-in module with Python 3.3 and
above. There are other virtual environment tools around, all with their
relative strengths and weaknesses, but they all share the common goal of
keeping Python dependencies isolated to a project.



virtualenv and pipenv are two alternative virtual environment tool options that offer more
features than venv. These alternatives are well suited for complex Python projects and
deployments. You'll find links to these in the Further reading section at the end of this
chapter.

Let's begin and clone the GitHub repository and create a new Python virtual
environment for this chapter's source code. Open a new Terminal window
and work through the following steps:

1. Change into or create a folder where you want to store this book's
source code and execute the following commands. With the last
command, we rename the cloned folder to be pyiot. This has been done
to help shorten Terminal command examples throughout the book:

$ cd ~

$ git clone https://github.com/PacktPublishing/Practical-Python-

Programming-for-IoT

$ mv Practical-Python-Programming-for-IoT pyiot

2. Next, change into the chapter01 folder, which contains the code relating
to this chapter:

$ cd ~/pyiot/chapter01

3. Execute the following command, which creates a new Python virtual
environment using the venv tool. It's important that you type python3
(with the 3) and remember that venv is only available with Python 3.3
and above:

$ python3 -m venv venv

The options that we are passing to python3 include -m venv, which tells
the Python interpreter that we want to run the module named
venv. The venv parameter is the name of the folder where your virtual
environment will be created.

While it might look confusing at first glance in the preceding command, it's a common
convention to name a virtual environment's folder venv. Later in this chapter, in the
Anatomy of a virtual environment section, we will explore what lies beneath
the venv folder we just created.



4. To use a Python virtual environment, we must activate it, which is
accomplished with the activate command:

# From with in the folder ~/pyiot/chapter01

$ source venv/bin/activate

(venv) $

When your Terminal has a Python virtual environment activated, all
Python-related activity is sandboxed to your virtual environment.

Notice in the preceding code that, after activation, the name of the virtual
environment, venv, is shown as part of the Terminal prompt text, that is, (venv) $. In this
book, whenever you see Terminal examples where the prompt is (venv) $, it's a reminder
that commands need to be executed from within an activated Python virtual
environment.

5. Next, execute which python (without the 3) in your Terminal, and notice
that the location of the Python executable is beneath your venv folder
and if you check the version of Python, it's Python version 3:

(venv) $ which python

/home/pi/pyiot/chapter01/venv/bin/python

(venv) $ python --version

Python 3.7.3

6. To leave an activated virtual environment, use the deactivate command
as illustrated here:

(venv) $ deactivate

$ 

Notice also that (venv) $ is no longer part of the Terminal prompt text
once the virtual environment has been deactivated.

Remember to type deactivate to leave a virtual environment, not exit. If you type exit in
a virtual environment, it will exit the Terminal.

7. Finally, now that you are outside of our Python virtual environment if
you execute which python (without the 3) and python --version again, notice
we're back to the default system-level Python interpreter, which is
version 2:

$ which python

/usr/bin/python



$ python --version

Python 2.7.13

As we just illustrated in the preceding examples, when we ran python --
version in an activated virtual environment, we see that it's Python version 3
whereas in the last example, at the start of this chapter, the system level,
python --version, was version 2, and we needed to type python3 --version for
version 3. In practice, python (with no number) relates to the default version
of Python. Globally, this is version 2. In your virtual environment, we only
have one version of Python, which is version 3, so it becomes the default.

A virtual environment created with venv inherits (via a symbolic link) the global Python
interpreter version that it was invoked with (in our case, version 3 because the
command was python3 -m venv venv). If you ever need to target a specific Python version
that is different from the global version, investigate the virtualenv and pipenv virtual
environment alternatives.

We have now seen how to create, activate, and deactivate a Python virtual
environment and why it is important to use a virtual environment to
sandbox Python projects. This sandboxing means we can isolate our own
Python projects and their library dependencies from one another, and it
prevents us from potentially disrupting the system-level installation of
Python and breaking any system-level tools and utilities that rely on them.

Next, we will see how to install and manage Python packages in a virtual
environment using pip.

Installing Python GPIO packages
with pip
In this section, we learn how to install and manage Python packages in a
Python virtual environment you created and explored in the previous
section. A Python package (or library if you prefer that term) allows us to
extend the core Python language with new features and functionality. 



We will need to install many different packages throughout this book,
however, for starters and to explore and learn the basic concepts related to
package installation and management, we will be installing two common
GPIO-related packages in this section that we will use throughout this book.
These two packages are the following:

The GPIOZero library, an entry-level and easy to use GPIO library for
controlling simple electronics
The PiGPIO library, an advanced GPIO library with many features for
more complex electronic interfacing

In the Python ecosystem, package management is done with the
pip command (pip stands for Python installs packages). The official public
package repository that pip queries is known as the Python Package Index,
or simply PyPi, and it is available for browsing on the web at https://pypi.org.

Similarly to python and python3, there is pip and pip3. pip (without the number) will be the
default pip command that is matched to the default python command in a given virtual
environment.

There will be code examples in this book where we will be interacting with
your Raspberry Pi's GPIO pins, so we need to install a Python package (or
two) so that your Python code can work with your Raspberry Pi's GPIO
pins. For now, we are just going to check for and install two GPIO-related
packages. In Chapter 2, Getting Started with Python and IoT, and Chapter 5,
Connecting Your Raspberry Pi to the Physical World, we will cover these
GPIO packages and other alternatives in greater detail.

In your chapter01 source code folder, you will find a file
named gpio_pkg_check.py, which is replicated in the following. We will use
this file as the basis to learn about pip and package management in the
context of a Python virtual environment. This script simply reports the
availability of a Python package depending on whether
using import succeeds or raises an exception:

"""

Source File: chapter01/gpio_pkg_check.py

"""

try:

    import gpiozero

https://pypi.org./


    print('GPIOZero Available')

except:

    print('GPIOZero Unavailable. Install with "pip install gpiozero"')

try:

    import pigpio

    print('pigpio Available')

except:

    print('pigpio Unavailable. Install with "pip install pigpio"')

Let's check for the availability of GPIO packages using gpio_pkg_check.py and
with pip. I'll kill the suspense by telling you that they're not going to be
available in your freshly-created virtual environment (yet), however, we are
going to install them!

Note: They are already installed at the system level if you want to check yourself by
running this script outside of your virtual environment.

The following steps will walk us through the process of upgrading pip,
exploring the tool's options, and installing packages:

1. As the first step, we will upgrade the pip tool. In a Terminal window,
run the following command, remembering that all commands that
follow must be performed in an activated virtual environment—
meaning you should see the text (venv) in the Terminal prompt:

(venv) $ pip install --upgrade pip

...output truncated...

The preceding upgrade command may take a minute or two complete
and will potentially output a lot of text to the Terminal.

Are you facing pip problems? If you're getting a sea of red errors and exceptions when
trying to install a package with pip, try upgrading the pip version as a first step using
pip install --upgrade pip. It is a recommended first step after creating a fresh Python
virtual environment to upgrade pip.

2. With pip now upgraded, we can see what Python packages are already
installed in our virtual environment using the pip list command:

(venv) $ pip list

pip (9.0.1)

pkg-resources (0.0.0)

setuptools (33.1.1)



What we see in the preceding are the default Python packages in our
fresh virtual environment. Do not worry if the exact package list or
version numbers do not match exactly with the example.

3. Run our Python script with the python gpio_pkg_check.py command and
observe that our GPIO packages are not installed:

(venv) $ python gpio_pkg_check.py

GPIOZero Unavailable. Install with "pip install gpiozero"

pigpio Unavailable. Install with "pip install pigpio"

4. To install our two required GPIO packages, we use the pip install
command as shown in the following example:

(venv) $ pip install gpiozero pigpio

Collecting gpiozero...

... output truncated ...

5. Now, run the pip list command again; we will see these new packages
are now installed in our virtual environment:

(venv) $ pip list

colorzero (1.1)

gpiozero (1.5.0)   # GPIOZero

pigpio (1.42)      # PiGPIO

pip (9.0.1)

pkg-resources (0.0.0)

setuptools (33.1.1)

You may have noticed that there is a package called colorzero (this is
a color manipulation library) that we did not install. gpiozero (version
1.5.0) has a dependency on colorzero, so pip has installed it for us
automatically.

6. Re-run python gpio_pkg_check.py and we now see that our Python modules
are available for import:

(venv) $ python gpio_pkg_check.py

GPIOZero Available

pigpio Available

Great! We now have a virtual environment with two GPIO packages
installed. As you work on Python projects, you will inevitably install
more and more packages and want to keep track of them.



7. Take a snapshot of the packages you have previously installed with
the pip freeze command:

(venv) $ pip freeze > requirements.txt

The preceding example freezes all installed packages into a file
named requirements.txt, which is a common filename to use for this
purpose.

8. Look inside the requirements.txt file and you will see all of the Python
packages listed together with their version numbers:

(venv) $ cat requirements.txt

colorzero==1.1

gpiozero==1.5.0

pigpio==1.42

pkg-resources==0.0.0

In the future, if you move your Python project to another machine or
a new virtual environment, you can use your requirement.txt file to
install all of your captured packages in one go using the pip install -
r requirements.txt command.

Our requirements.txt example shows we have installed GPIOZero version 1.5.0, the
current version at the time of writing. This version has a dependency on ColorZero
version 1.1. It is possible that different (past or future) versions of GPIOZero may have
different dependencies than those shown in our example, so your own requirements.txt
file when performing the example exercise may be different.

We've now completed the basic installation life cycle of Python packages
using pip. Note that whenever you install new packages with pip install, you
also need to re-run pip freeze > requirements.txt to capture the new packages
and their dependencies.

To finish our exploration of pip and package management, here are a few
other common pip commands:

# Remove a package

(venv) $ pip uninstall <package name>

 

# Search PyPi for a package (or point your web browser at 

https://pypi.org)

(venv) $ pip search <query text>

 



# See all pip commands and options (also see Further Reading at the end of 

the chapter).

(venv) $ pip --help

Congratulations! We've reached a milestone and covered the essential
virtual environment principles that you can use for any Python project, even
ones that are not Raspberry Pi related! 

During your Python journey, you will also come across other package installers and
tools named easy_install and setuptools. Both have their uses; however, it's pip that you
will rely on most of the time.

Now that we have seen how to create a virtual environment and install
packages, let's take a look at a typical Python project folder structure such
as ~/pyiot/chapter01 and discover what lies beneath the venv folder.

Anatomy of a virtual environment

This section relates to venv, which we have been using in this chapter,
and will apply to virtualenv but not pipenv, which we listed as alternative
virtual environment tools. The example is also specific to a Raspbian OS
and is typical of a standard Unix-based OS. It's important to, at a minimum,
understand the basic structure of a virtual environment deployment since
we will be mixing our own Python programming code in with the files and
folders that make up the virtual environment.

The light weight venv tool that comes with Python 3.3 and above is a subset
of virtualenv.

Here is the folder structure of our virtual environment. Yep, its a screenshot
from a Mac. That's so I could get everything on screen at once:



Figure 1.1 – Contents of a typical venv virtual environment folder

The following points explain the core subfolders that are found within
our ~/pyiot/chapter01 folder after we ran python3 -m venv venv and installed
packages using pip:



The venv folder contains all of the Python virtual environment
files. There is no real practical need to be touching anything under this
folder manually—let the tools do that for you. Remember that the
folder is named venv only because that's what we called it when it was
created.

The venv/bin folder contains the Python interpreter (in the venv case,
there are symbolic links to the system interpreter) and other core
Python tools, including pip.
Underneath the venv/lib folder are all the sandboxed Python packages
for the virtual environment, including the GPIOZero and PiGPIO
packages we installed using pip install.
Our Python source file, gpio_pkg_check.py, is in the top-
level folder, ~/pyiot/chapter01; however, you can create sub-folders here
to help to organize your code and non-code files.
Finally, requirements.txt lives by convention in the top project folder.

The virtual environment folder venv does not actually need to be kept in the
project folder; however, it's often convenient to have it there for activation
with the activate command.

Your venv folder and anything below it should not be added to your source version
control system, but you should add requirements.txt. As long as you have a current
requirements.txt file, you can always recreate your virtual environment and reinstate
packages to a known state.

It's important to understand that, as a Python developer, you will be mixing
in your own programming code with files and folders that form part of the
virtual environment system and that you should be pragmatic when
selecting which files and folders are added to your version control system,
should you be using one.

This last point is important since the virtual environment system can
amount to many megabytes in size (and often many times larger than your
program code) that does not need versioning (since we can always recreate
the virtual environment as long as we have a requirements.txt file), plus it's
host platform-specific (that is, there will be differences between Windows,
Mac, and Linux), plus there will be differences between different virtual



environment tools (for example, venv versus pipenv). As such, virtual
environments are not generally portable in projects that involve many
developers working on different computers.

Now that we have briefly explored the file and folders structure and the
importance of understanding this structure, we will continue and look at
alternative ways of running a script that is sandboxed to a virtual
environment.

Alternative methods of executing a
Python script
Let's briefly turn our attention to the alternative ways that we can execute a
Python script. As we will learn, choosing the appropriate method is all
based around how and from where you intend to start your script and
whether your code requires elevated permissions.

The most common way of running a Python script is from within its virtual
environment and with the permissions of the currently logged in user.
However, there will be scenarios where we need to run a script as the root
user or from outside an activated virtual environment.

Here are the ways we will explore:

Using sudo with virtual environments
Executing Python scripts outside of their virtual environments
Running a Python script at boot

Let's start by learning how to run a Python script with root user
permissions.

Using sudo within virtual environments



I'm sure that while working on your Raspberry Pi you have had to execute
commands in a Terminal with the sudo prefix because they required root
privileges. If you ever need to run a Python script that is in a virtual
environment as root, you must use the full path to your virtual
environment's Python interpreter.

Simply prefixing sudo before python, as shown in the following example,
does not work under most circumstances, even if we are in the virtual
environment. The sudo action will use the default Python that's available to
the root user, as shown in the second half of the example:

# Won't work as you might expect!

(venv) $ sudo python my_script.py

 

# Here is what the root user uses as 'python' (which is actually Python 

version 2).

(venv) $ sudo which python

/usr/bin/python

The correct way to run a script as root is to pass the absolute path to your
virtual environment's Python interpreter. We can find the absolute path
using the which python command from inside an activated virtual
environment:

(venv) $ which python

/home/pi/pyiot/chapter01/venv/bin/python

Now, we sudo our virtual environment's Python interpreter and the script will
run as the root user and within the content of our virtual environment:

(venv) $ sudo /home/pi/pyiot/chapter01/venv/bin/python my_script.py

Next, we'll see how to run a Python script that's sandboxed in a virtual
environment from outside of its virtual environment. 

Executing Python scripts outside of their virtual
environments

A natural extension to the preceding discussion on sudo is how do I run a
Python script from outside of its virtual environment? The answer is the



same as in the preceding section: just make sure you are using the absolute
path to your virtual environment's Python interpreter.

Note: In the following two examples, we're not in a virtual environment—there is no $
(venv) on the prompt. If you still need to exit your Python virtual environment, type
deactivate.

The following command will run a script as the currently logged in user
(which, by default, is the pi user):

# Run script as logged-in user.

$ /home/pi/pyiot/chapter01/venv/bin/python gpio_pkg_check.py

Or to run the script as root, prefix sudo:

# Run script as root user by prefixing sudo

$ sudo /home/pi/pyiot/chapter01/venv/bin/python gpio_pkg_check.py

Since we are using the virtual environment's Python interpreter, we are still
sandboxed to our virtual environment and any Python packages we installed
are available.

Next, we will learn how to make a Python script run whenever you boot
your Raspberry Pi.

Running a Python script at boot

There will come a time when you have developed an awesome IoT project
and you want it to run automatically every time you start your Raspberry Pi.
Here is one simple way to achieve this using a feature of cron, the Unix
scheduler. If you are not familiar with the basics of cron, search the web for
cron tutorial—you'll find heaps of them. I've provided curated links in the
Further reading section.

Here are the steps to configure cron and make a script run on boot:

1. In your project folder, create a bash script. I've named it run_on_boot.sh:

#!/bin/bash

# Absolute path to virtual environment python interpreter



PYTHON=/home/pi/pyiot/chapter01/venv/bin/python

# Absolute path to Python script

SCRIPT=/home/pi/pyiot/chapter01/gpio_pkg_check.py

# Absolute path to output log file

LOG=/home/pi/pyiot/chapter01/gpio_pkg_check.log

echo -e "\n####### STARTUP $(date) ######\n" >> $LOG

$PYTHON $SCRIPT >> $LOG 2>&1

This bash script will run a Python script using the absolute paths for
both the script and its Python interpreter. Also, it captures any script
output and stores it in a log file. For this example, we're simply
going to run and log the output of gpio_pkg_check.py on boot. It's the
last line that ties everything together and runs and logs our Python
script. The 2>&1 part at the end is necessary to ensure that errors, in
addition to standard output, are also logged.

2. Mark the run_on_boot.sh file as an executable file:

$ chmod u+x run_on_boot.sh

If you are not familiar with the chmod command (chmod means
change mode), what we are doing is giving the operating system
permission to execute the run_on_boot.sh file. The u+x parameters mean
for the current User, make the file eXecutable. To learn more about
chmod, you can type chmod --help or man chmod in the Terminal.

3. Edit your crontab file, which is the file where cron scheduling rules are
stored:

$ crontab -e

4. Add the following entry to your crontab file, using the absolute path to
the run_on_boot.sh bash script we created in step 1:

@reboot /home/pi/pyiot/chapter01/run_on_boot.sh &

Do not forget the & character at the end of the line. This makes sure
the script runs in the background.



5. Run the run_on_boot.sh file manually in a Terminal to make sure it
works. The gpio_pkg_check.log file should be created and contains the
output of the Python script:

$ ./run_on_boot.sh

$ cat gpio_pkg_check.log

####### STARTUP Fri 13 Sep 2019 03:59:58 PM AEST ######

GPIOZero Available

PiGPIO Available

6. Reboot your Raspberry Pi:

$ sudo reboot

7. Once your Raspberry Pi has finished restarting, the
gpio_pkg_check.log file should now contain additional lines, indicating
that the script did indeed run at boot:

$ cd ~/pyiot/chapter01

$ cat gpio_pkg_check.log

####### STARTUP Fri 13 Sep 2019 03:59:58 PM AEST ######

GPIOZero Available

PiGPIO Available

####### STARTUP Fri 13 Sep 2019 04:06:12 PM AEST ######

GPIOZero Available

PiGPIO Available

If you are not seeing the additional output in the gpio_pkg_check.log file after a
reboot, double-check that the absolute path you entered in crontab is correct
and that it works manually as per step 5. Also, review the system log
file,  /var/log/syslog, and search for the text, run_on_boot.sh.

Our cron-based example of running a script on boot is one of many options that are
available in Unix-based operating systems such as Raspbian. Another common and
more advanced option using systemd can be found on the Raspberry Pi website at https://
www.raspberrypi.org/documentation/linux/usage/systemd.md. Irrespective of the option you prefer, the
key point to remember is to ensure your Python scripts run from within their virtual
environment.

We have now learned alternative methods to run a Python script, which will
help you in the future to correctly run your Python-based IoT projects after
they are developed or start them when your Raspberry Pi boots if required.

https://www.raspberrypi.org/documentation/linux/usage/systemd.md


Next, we will now move on to making sure your Raspberry Pi is set up and
configured correctly for the GPIO and electronic interfacing that we'll be
diving into in the next chapter, Chapter 2, Getting Started with Python and
IoT, and subsequent chapters.

Configuring the GPIO interface on
our Raspberry Pi
Before we can start working with Python GPIO libraries and controlling
electronics, one task we need to perform is to enable the GPIO interfaces on
your Raspberry Pi. Even though we have installed Python packages for
GPIO control, we have not told Raspbian OS that we want to use the
Raspberry Pi's GPIO Pins for specific cases. Let's do that now.

Here are the steps to follow:

1. From your Raspbian desktop, navigate to the Raspberry menu |
Preferences | Raspberry Pi Configuration, as shown here in Figure 1.2:



Figure 1.2 – Location of the Raspberry Pi Configuration menu item
Alternatively, interfaces can be managed at the command line with the sudo raspi-
config command and navigating to the Interfacing Options menu.

2. Enable all of the interfaces as shown in the following screenshot:



Figure 1.3 - Raspberry Pi Configuration Dialog

3. Click the OK button.

After you click the OK button, you may be prompted to reboot your
Raspberry Pi; however, do not confirm the reboot just yet because there is
one more task we need to perform first. We'll look at that next.

Configuring the PiGPIO daemon

We also need to start the PiGPIO daemon, which is a system service that
needs to be running so that we can use the PiGPIO GPIO client library,
which we will start using next in Chapter 2, Getting Started with Python and
IoT.



Architecturally, the PiGPIO library comprises two parts—a server service and a client
that communicates over local pipes or sockets to the service. We will cover more about
this basic architecture in Chapter 5, Connecting Your Raspberry Pi to the Physical World.

Execute the following in a Terminal. This will start the PiGPIO daemon and
will ensure that the PiGPIO daemon is started automatically when your
Raspberry Pi boots:

$ sudo systemctl enable pigpiod

$ sudo systemctl start pigpiod

Now, it's time to reboot your Raspberry Pi! So, take a break while your
Raspberry Pi restarts. You deserve it because we have covered a lot! 

Summary
In this chapter, we explored the Python ecosystem that is part of a typical
Unix-based operating system such as Raspbian OS and learned that Python
is a core element of the operating system tooling. We then covered how to
create and navigate a Python virtual environment so that we can
sandbox our Python projects so they will not interfere with one another or
the system-level Python ecosystem.

Next, we learned how to use the Python package management tool, pip, to
install and manage Python library dependencies from within a virtual
environment, and we did this by installing the GPIOZero and PiGPIO
libraries. And since there will be times that we need to execute a Python
script as the root user, from outside its virtual environment or during boot
up, we also covered these various techniques.

By default, Raspbian does not have all of its GPIO interfaces enabled, so
we performed the configuration needed to enable these features so that they
are readily available for use in later chapters. We also started and learned
how to set up the PiGPIO daemon service so that it starts every time your
Raspberry Pi is booted.



The core knowledge you have gained in this chapter will help you to
correctly set up and navigate sandboxed Python development environments
for your own IoT (and non-IoT) projects and safely install library
dependencies so they do not interfere with your other Python projects or the
system-level installation of Python. Your understanding of different ways of
executing a Python program will also help you to run your projects with
elevated user permissions (that is, as the root user), or at boot, should your
project have these requirements.

Next, in Chapter 2, Getting Started with Python and IoT, we will jump
straight into Python and electronics and create an end-to-end internet-
enabled program that can control an LED over the internet. We will take a
look at two alternative ways of flashing an LED using the GPIOZero and
PiGPIO GPIO libraries before connecting our LED to the internet by using
an online service, dweet.io, as our networking layer. 

Questions
As we conclude, here is a list of questions for you to test your knowledge
regarding this chapter's material. You will find the answers in the
Assessments section of the book:

1. What is the main reason why you should always use a virtual
environment for your Python projects?

2. Do you need to or should you place the virtual environment folder
(that is, venv) under version control?

3. Why create a requirements.txt file?
4. You need to run a Python script as the root user. What step must you

take to ensure that the script executes in its intended virtual
environment context?

5. What does the source venv/bin/activate command do?
6. You are in an activated virtual environment. What is the command to

leave the virtual environment and return to the host shell?
7. You created a Python project and virtual environment in PyCharm.

Can you work on and run the project's Python scripts in a Terminal?



8. You want a GUI tool to edit and test Python code on your Raspberry Pi
but do not have PyCharm installed. What pre-installed tool that comes
with Python and Raspbian could you use?

9. You've advanced in your Python and electronics knowledge and are
trying to hook up a device using I2C to your Raspberry Pi but you
cannot get it to work. What might be the problem and how do you
address it?

Further reading
We covered the venv virtual environment tool in this chapter. Here are links
to its official documentation:

venv documentation: https://docs.python.org/3/library/venv.html
venv tutorial: https://docs.python.org/3/tutorial/venv.html

If you would like to learn about the virtualenv and pipenv alternative virtual
environment tools, here is their official documentation:

virtualenv home page: https://virtualenv.pypa.io/en/latest
pipenv home page: https://docs.pipenv.org/en/latest

The following is a link to the Python Packaging Guide. Here you will find a
comprehensive guide regarding Python package management,
including pip and the easy-install/setup tools alternatives: 

Python Packaging User Guide: https://packaging.python.org

If you wish to learn more about scheduling and cron, here are two resources
to get you started:

An overview of cron syntax (and a GUI tool): https://www.raspberrypi.or
g/documentation/linux/usage/cron.md 

A detailed tutorial on cron syntax: https://opensource.com/article/17/11/how
-use-cron-linux

https://docs.python.org/3/library/venv.html
https://docs.python.org/3/tutorial/venv.html
https://virtualenv.pypa.io/en/latest/
https://docs.pipenv.org/en/latest/
https://packaging.python.org/
https://www.raspberrypi.org/documentation/linux/usage/cron.md
https://opensource.com/article/17/11/how-use-cron-linux


Getting Started with Python and IoT
In Chapter 1, Setting Up Your Development Environment, we went through the
essentials of the Python ecosystem, virtual environments, and package
management and set up your Raspberry Pi for development and GPIO interfacing.
In this chapter, we will begin our journey in Python and IoT.

What we cover in this chapter will lay the foundations and give us a working point
of reference for the more advanced content that we'll cover in later chapters. We
will learn to create a simple electrical circuit with a button, resistor, and LED (or
light-emitting diode) and explore alternative ways to interact with the button and
LED with Python. We will then proceed to create and discuss a complete end-to-
end IoT program to control the LED over the internet and complete this chapter by
looking at ways that you can extend the program.

In this chapter, we will cover the following topics:

Creating a breadboard prototype circuit
Reading an electronic schematic diagram
Exploring two ways to flash a LED in Python
Exploring two ways to integrate a push button in Python
Creating your first IoT program
Extending your IoT program

Technical requirements
To perform the exercises in this chapter and throughout this book, you will need
the following:

Raspberry Pi 4 Model B. A 1 GB RAM version will be adequate to run our
examples. If you are working directly on your Raspberry Pi versus a Secure
Shell (SSH) session; for example, more RAM is recommended to improve
the Raspbian Desktop experience and responsiveness.
You will need Raspbian OS Buster (with desktop and recommended
software).
You will need a minimum of Python version 3.5.



These requirements are what the code examples in this book are based on. It's
reasonable to expect that the code examples should work without modification on a
Raspberry Pi 3 Model B, Raspberry Pi Zero W, or a different version of Raspbian
OS as long as your Python version is 3.5 or higher.

You will find this chapter's source code in the chapter02 folder in the GitHub
repository available at the following URL: https://github.com/PacktPublishing/Practical
-Python-Programming-for-IoT.

You will need to execute the following commands in a Terminal to set up a virtual
environment and install the Python libraries required for the code in this chapter:

$ cd chapter02              # Change into this chapter's folder

$ python3 -m venv venv      # Create Python Virtual Environment

$ source venv/bin/activate  # Activate Python Virtual Environment

(venv) $ pip install pip --upgrade        # Upgrade pip

(venv) $ pip install -r requirements.txt  # Install dependent packages

The following dependencies are installed from requirements.txt:

GPIOZero: The GPIOZero GPIO library (https://pypi.org/project/gpiozero)
PiGPIO: The PiGPIO GPIO library (https://pypi.org/project/pigpio)
Requests: A high-level Python library for making HTTP requests (https://pyp
i.org/project/requests)

We are going to require a few physical electronic components:

1 x 5 mm red LED
1 x 200 Ω resistor: Its color bands will be red, black, brown, and then gold or
silver

Momentary push button (Single Pole Single Throw—SPST)
A breadboard
Male-to-female and male-to-male jumper cables (sometimes called Dupont
cables)

You will find a complete parts list cataloging all of the electrical components required for every
chapter in the Preface.

When you have your electronic components ready, we can proceed and arrange
them on your breadboard.

https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://pypi.org/project/gpiozero
https://pypi.org/project/pigpio
https://pypi.org/project/requests


Creating a breadboard prototype
circuit
Throughout this book, we will be building many electrical circuits, and we will do
this using an electronic breadboard. In the initial chapters, I will present many of
the circuits with both a breadboard layout similar to that illustrated toward the end
of this section in Figure 2.7 and with a schematic diagram as shown in Figure 2.8.

As we progress through this book and you gain more experience building
breadboard circuits, I will cease with the breadboard layouts for the simpler
circuits; however, I will still present them for the more complex circuits so you
have something to compare your builds against.

Please note that the proceeding circuit examples and discussions are only brief. At this stage of
this book, we intend to build a simple electronic circuit that will be the basis for our Python
examples in this chapter and Chapter 3, Networking with RESTful APIs and Web Sockets Using
Flask, and Chapter 4, Networking with MQTT, Python, and the Mosquitto MQTT Broker.  

We will discuss the Raspberry Pi and its pin numbering in detail in Chapter 5, Connecting Your
Raspberry Pi to the Physical World. Furthermore, we will cover in detail circuits and electronics
fundamentals in Chapter 6, Electronics 101 for the Software Engineer, where among other topics
we will learn the why behind how the button interacts electrically with your Raspberry Pi and
why a 200 Ω resistor accompanies our LEDs.

Let's get started with building our first circuit. I'll walk you through the breadboard
build step by step and talk briefly about each component as we work with them.
We will start by discussing what a breadboard is and how it works.

Understanding the breadboard

An electronic breadboard, as illustrated in Figure 2.1, is a prototyping board that
helps you to electrically connect components and wires quickly and easily. In this
section, we will discuss the general properties of a breadboard in preparation for
connecting components and wires together in the following sections:



Figure 2.1 – Breadboard

Breadboards come in many different sizes, and our illustrated breadboard is a half-
sized breadboard. Irrespective of their size, however, their basic layout and
electrical connectivity are similar—with one small exception that I'll mention later.

Real breadboards may, or may not, have the row and column numbers markings on them. They have b
included in the illustration to assist with the following discussion and explanations.

The holes in the breadboard are where you place electrical components and wires
to electrically connect them. The holes are electrically connected in the following
ways:



The two outer columns of holes are commonly referred to as power rails.
There is a positive (+) column and a negative (-) column on either side of the
breadboard. Each column of holes is electrically connected and run for the
full length of the breadboard. Hence, there are four independent power rails
on this breadboard: a + and - rail on the left-hand side of the breadboard and a
+ and - rail on the right-hand side.

The power rails are frequently used to help to distribute power around the
breadboard to components. Please note that they do not provide power
themselves! They need a power source such as a power supply or battery
connected to them to provide power.

The center of the breadboard has two banks of holes, which I have labeled
Bank A-E and Bank F-J. Each row of holes in a bank is electrically connected.
For example, holes A1 through to E1 are electrically connected, as are holes
F1 through to J1. However, to be clear in our understanding, A1-E1 are not
electrically connected to F1-J1 because they are on a separate bank.

We straddle Integrated Circuits (ICs)—commonly called chips—across the gap between the two
banks when we connect them into a breadboard. We will see an example of this in Chapter 10,
Movement with Servos, Motors, and Steppers, when we use an IC to control motors.

Here are a few more examples of how the holes are connected that you can work
through to help with your understanding:

B5 is electrically connected to C5 (they share the same row). 
H25 is electrically connected to J25 (they share the same row).
A2 is not electrically connected to B2 (they don't share the same row).
E30 is not electrically connected to F30 (they are on different banks).
The third + hole (from the top of the breadboard) on the left-hand side power
rail is electrically connected to the last + hole on the left-hand side power rail
(they are in the same vertical column).
The third + hole (from the top of the breadboard) on the left-hand side power
rail is not electrically connected to the third + hole on the right-hand side
power rail (they are on different power rails).

I mentioned at the start of this section that all breadboards are basically the same,
with one minor exception. This exception relates to the power rails. Some full-size
breadboards may split their power rails into two separate vertical banks (so,
electrically, the vertical holes in a rail do not run the full length of the breadboard).
It is not always visually obvious that the power rails are split, so discovery needs to



happen on a breadboard-by-breadboard basis. I mention this just in case you are
using a full-size breadboard and experience connectivity issues when using the
power rails.

Now that we have introduced breadboards, and we understand how the holes are
electrically related to one another, let's start plugging components and wires into
our breadboards to create our first circuit. We'll start with the push button.

Positioning and connecting the push button

We are using a simple on/off button, also commonly known as an Single Pole,
Single Throw (SPST) momentary switch. An example is shown in Figure 2.2:

Figure 2.2 – A push button and schematic symbol

On the left-hand side of Figure 2.2 is a photograph of a momentary push button,
while the right-hand side shows the schematic symbol for a momentary push
button. We'll see this symbol and discuss schematic diagrams where these types of
symbols appear in the next section.

Push buttons come in many shapes and sizes; however, their general operation is
the same. This specific push button pictured on the left-hand side is known as
a tactile push button. They are small and well suited for use with a breadboard.

Figure 2.3 illustrates the push button connection we need to create on our
breadboard. Please refer to this as you follow the forthcoming steps:



Figure 2.3 – Connecting the push button

Here is how to connect the push button into your breadboard and connect it to your
Raspberry Pi. The following step numbers match the numbered black circles
in Figure 2.3:

1. Position the button on the breadboard as shown. It does not matter exactly
which row of holes the button goes into, however, Figure 2.3 shows the
button positioned (top-left leg) at hole B10.

2. Next, connect a jumper wire into the same row as the push button's top-most
leg (our illustration uses hole A10). Connect the other end of this wire to the



eighth pin counted down from the outer edge of your Raspberry Pi's GPIO
header. This pin is known as GPIO 23.

You can get header pin labels and breadboard compatible modules to assist you with Raspberry
Pi pin connections and identification. Here is a link to a printable version to get you started: http
s://github.com/splitbrain/rpibplusleaf. We will cover GPIO pins and their numbering in Chapter 5,
Connecting Your Raspberry Pi to the Physical World.

3. Finally, using another wire (labeled gnd'), we connect the other side of the
push button (the leg in hole B2) to the negative power rail on your
breadboard. Our illustration shows the gnd' wire connection from hole A12 to
a nearby hole on the left-hand side negative (-) power rail. The abbreviation
gnd means ground. We will cover this term in more detail in the forthcoming
section, Understanding ground connections and symbols.

Electrically, an SPST switch can be installed any way around. If your button has four legs (two
sets will be electrically connected) and your circuit below does not work when we test it later in
the Exploring two ways to integrate a push button in Python section try rotating the button in
your breadboard 90 degrees.

Now that our push button is in position and wired, we will next position and
connect our LED.

Positioning and connecting the LED

An LED is a small, yet bright, light made of a tiny crystal that emits a color when
electricity is connected to it.

A typical LED is shown in  Figure 2.4. The left-hand side of the diagram shows a
physical representation of a LED, while the right-hand side shows the schematic
symbol for a LED:

https://github.com/splitbrain/rpibplusleaf


 Figure 2.4 – LED and schematic symbol

LEDs need to be connected the correct way around into a circuit, otherwise, they
will not work. If you look closely at your LED, you will notice a flat side on the
LED casing. The leg on this side is the cathode, which connects to the negative or
ground side of a power source. The cathode leg will also be the shorter of the
LED's legs. The other leg is known as the anode and connects to the positive side
of a power source. If you examine the LED symbol, you will notice that the
cathode side of the LED has a line drawn across the tip of the triangle—if you
think of this line as being like a big negative sign, it'll help you to remember which
side of the symbol is the cathode leg.

Figure 2.5 the LED connection we are about to create. Please refer to this diagram
as you follow the forthcoming steps:



Figure 2.5 – Connecting the LED

Here is how to connect the LED into your breadboard and connect it to your
Raspberry Pi. The following step numbers match the numbered black circles in
Figure 2.5 :



1. Connect the LED into your breadboard as illustrated, taking care to ensure
that the LED is installed the correct way around. Our illustration shows the
cathode leg in hole E15 and the anode leg in hole E16.

You may need to bend the legs on your LED to get it into position. As you position your LED,
make sure the two legs are not touching one another! If they are touching, this will cause what is
known as an electrical short, and the LED part of the circuit will not work. 

2. Next, using a jumper wire (labeled gnd"), connect the cathode leg of the LED
into the same power rail shared by the push button. We have shown this
connection with one end of the gnd" wire connected in hole A15, while the
other end of the wire connected to a nearby hole on the left-hand side negative
(-) power rail.

3. Finally, using another jumper wire (labeled gnd), connect the negative (-)
power rail to the 17th outer edge pin on your Raspberry Pi's GPIO header.
This pin is a ground (GND) pin on your Raspberry Pi.

Well done! That's our LED connected. Next, we add the resistor, which will
complete our circuit.

Positioning and connecting the resistor

A resistor is an electronic component used to limit (that is, resist) current flow and
divide voltage and they are a very common electrical component.

Shown in Figure 2.6 are a physical resistor (left-hand side) and two schematic
symbols (right-hand side). There is no practical difference between the schematic
symbols pictured. They represent different documentation standards, and you will
find that the author of a schematic diagram will choose and stick with one type of
symbol. We'll be using the zig-zag symbol throughout this book:



Figure 2.6 – Resistor and schematic symbols

Resistors come in many shapes, sizes, and colors. As a general guide, their
physical shape and size relate to their physical properties and capabilities, while
the color of their casing is usually insignificant, at least as far as their properties
are concerned. The colored bands on a resistor, however, are very significant as
they identify the resistor's value. It's worth mentioning that small general-purpose
resistors (which are what we will be using) use color bands for specifying their
value, while physically larger resistors used in high power applications frequently
have their resistance value printed on their casing.

Resistors are an unbiased electrical component, meaning that they can be installed
in an electrical circuit either way around. Their values, however, need to be chosen
correctly, otherwise a circuit may not work as intended, or worse, the resistor
and/or other components (including your Raspberry Pi) can be damaged.

When starting out and learning about circuits, it is highly recommended and safest to always use
the intended resistor values that are listed for a circuit. Avoid any temptation to substitute
different values when you do not have the correct value on hand as this can result in damage to
components and even your Raspberry Pi.

Our use of resistors through this book will be pragmatic. although I will be
explaining how and why we arrive at the certain values we use from Chapter 6,
Electronics 101 for the Software Engineer, onward. If you are new to resistors, you
will find two links in the Further reading section where you can learn more about
them, including how to read their values.

Figure 2.7 demonstrates the resistor connection we need to create. Please refer to
this as you follow the forthcoming steps:



Figure 2.7 – Completed button and LED circuit on the breadboard

Here is how to connect the resistor into your breadboard. The following step
numbers match the numbered black circles in Figure 2.7:

1. Place one leg (is does not matter which one) of the resistor into a hole that
shares the same row as the LED's anode leg. This connection is shown at hole
D16. Insert the other leg inserted into a vacant row, shown at D20 (it'll be a
vacant row on your breadboard until we connect the wire next).

2. Using a jumper wire (illustrated starting at hole A20), we connect the other
leg of our resistor to the 20th pin on the outer edge of your Raspberry Pi's
GPIO header. This pin is known as GPIO 21.



Well done! With that last connection, we have created our first circuit. We'll be
using this base circuit throughout the rest of this chapter and in the next two
chapters, Chapter 3, Networking with RESTful APIs and Web Sockets Using Flask,
and Chapter 4, Networking with MQTT, Python, and the Mosquitto MQTT Broker.
We will start to explore a range of other circuits from Chapter 5, Connecting Your
Raspberry Pi to the Physical World, onward.

Now that we have completed our breadboard circuit and learned how components
and wires are connected on our breadboard, we are ready to explore a diagramming
technique that is used to describe electrical circuits.

Reading an electronic schematic
diagram
In the last section, we built our first circuit on a breadboard by following a series
of illustrated steps. In this section, we will learn about schematic diagrams, which
is a formal way of documenting and describing an electrical circuit. These are the
diagrams you find in electronic texts and datasheets.

We will learn how to read a simple schematic diagram and how it relates back to
the breadboard layout we just created. Understanding how the two relate, and
especially being able to create a breadboard layout from a schematic diagram, is an
important skill you will need to develop as you continue your electronics and IoT
journey.

The electronic circuits and schematic diagrams we will be seeing and working with
throughout this book will be relatively simple as far as schematic diagrams are
concerned. We will address important concepts and component symbols as we
encounter them on a case-by-case basis. For our journey, a full and detailed
explanation of the ins and outs of schematic diagramming is
unnecessary and beyond the practical scope of this book. However, I encourage
you to read through the Spark Fun tutorial that's mentioned in the Further reading
section. It provides a brief, yet comprehensive overview of reading schematic
diagrams and will provide you with a good foundational understanding of this
diagramming technique and its semantics.



Let's start by looking at a schematic diagram that represents the breadboard circuit
we just created as shown in Figure 2.7. Our semantic diagram is illustrated here:

Figure 2.8 – Schematic diagram of the breadboard circuit from Figure 2.7

A schematic diagram can be correctly drawn in a multitude of ways; however, I've
purposely drawn this diagram (and will do so where appropriate in this book) to
closely resemble its equivalent breadboard layout to help with its interpretation and
understanding.

We'll learn to read this schematic diagram by first explaining the push button
connection and wiring.

Reading the push button schematic connection

I've combined the breadboard layout and schematic diagram (with a few additional
labels) as follows:



Figure 2.9 – Combined breadboard and schematic diagram, part 1 of 2

Here is how to read the pushbutton connection. The following step numbers match
the numbered black circles in Figure 2.9:

1. Start at the breadboard with the wire labeled wire 1. If we look at the ends of
this wire, we see that one end is connected to GPIO 23 on the Raspberry Pi,
while the other end (at hole A10) connects to a row shared by the push button.

2. Looking at the schematic diagram, this breadboard connection is depicted
diagrammatically by the line labeled wire 1. You will notice one end of the
line is labeled GPIO23, while the other end leads into one side of the button
symbol.



The color of a wire's casing has no inherent meaning. The color is simply a visual aid to help to
distinguish different wires and connections. However, there are some common conventions such
as using a red wire for a positive power connection and a black wire for the negative or ground
wire

3. Next, starting at the other side of the push button on the breadboard (hole
A12), notice the wire labeled gnd'. This wire connects the push button to the
outer power rail on the breadboard.

4. Five holes down from this first power rail connection, we see a second ground
wire (labeled gnd) leading from the breadboard back to a GND pin on the
Raspberry Pi.

5. The breadboard gnd and gnd' wire connections are seen in the schematic
diagram as the line labeled gnd, which leads out of the button and ends at a
downward pointing arrow symbol annotated GND (remember gnd and gnd'
are electrically connected on the breadboard and are therefore logically a
single wire). This is the symbol for a ground connection, and you will
frequently see this symbol repeated a lot in schematic diagrams. I'll have more
to say about this symbol when we reach the section titled Reading and
understanding the ground symbol.

6. Examine the button symbol in the schematic diagram and you will notice that
the wire 1 and gnd lines are not joined but rather terminate in the button
symbol (the small circles). This is known as a normally open connection or, in
our specific case, a normally open switch. You can think of normally open as
meaning the line is broken (and remember a line represents a wire). Now, if
you imagine the button pressed, then the button touches each circle and
connects the blue and gnd lines, resulting in a closed connection that
completes the circuit between GPIO 23 and GND. We'll discuss this idea
more in Chapter 6, Electronics 101 for the Software Engineer.

When you are comfortable that you understand how the push button connections
on the breadboard match the push button section of the schematic diagram, we will
proceed and discuss LED and resistor connections.

Reading the LED and resistor schematic connection

Continuing from the previous section, where we learned how to read and
understand the push button part of the schematic diagram, next we complete our



explanation by covering the LED and resistor connections, as shown here:

Figure 2.10 – Combined breadboard and schematic diagram, part 2 of 2

Here is how to read the LED and resistor connection. The following step numbers
match the numbered black circles in Figure 2.10:

1. Start at the wire labeled wire 2 on the breadboard. This wire connects GPIO
21 on the Raspberry Pi into the row shared by one end of the resistor (hole
A25).

2. The wire 2 connection is depicted by the line also labeled wire 2 on the
schematic diagram.



3. On the breadboard, the other end of the resistor is connected to the anode leg
of the LED (hole E15). Remember, the resistor and anode leg of the LED are
electrically connected because they share the same row of holes in the same
bank on the breadboard.

4. We see the resistor/LED connection in the schematic diagram where the
resistor symbol meets the LED symbol. We know the resistor connects to the
anode side of the LED in the diagram by the way the LED symbol is
orientated.

5. Next, on the breadboard, the other leg of the LED (hole E15)—the cathode
leg—connects to the gnd" wire (hole A15), which then connects back to the
outer power rail that is also shared by the push button's gnd' wire (which is
then connected back to the Raspberry Pi's GND pin with the gnd wire.)

6. Finally, on the schematic diagram, this connection from the LED cathode leg
to GND is depicted by the line labeled gnd (the same one used by the push
button).

We have now completed our schematic diagram explanation. How did you do? I
hope you were able to trace around the diagram and see how it relates back to the
circuit we built on the breadboard.

Our last step illustrates an important concept in electronics—a common ground.
We'll discuss this concept in more detail next.

Introducing ground connections and symbols

Electrical circuits all require a common electrical point of reference, and we call
this point ground. This is why we see the push button and LED sharing a common
connection on both the breadboard and schematic diagram (as a reminder, refer
to Figure 2.10.

For the simple circuits presented throughout this book and when working with
your Raspberry Pi's GPIO pins, it will be practical to consider the
terms negative and ground as interchangeable. This is because the negative side of
a power source will be our common point of electrical reference (and yes, GPIO
pins are a source of power, which we will explore more in Chapter 6, Electronics
101 for the Software Engineer).

As mentioned previously in the Reading the push button schematic
connection section, in step 4, we diagrammed the ground point using an arrow



symbol. Our ground symbol (made out of line segments) is one common variation
of a ground symbol. You'll see another variation in Figure 2.11:

Figure 2.11 – Common schematic diagram ground symbols

All ground points are electrically connected, and we may repeat the symbol many
times in a schematic diagram to help to simplify the diagram. By using the ground
symbol to indicate a common ground connection, we remove the need to draw
many interconnecting lines to join all ground connections together (which would
get rather messy for large or more complex circuits).

Our simple circuit certainly does not come under the banners of large or complex,
however, to illustrate the concept of common ground, I have redrawn the
schematic diagram shown originally in Figure 2.8 here, only this time using
multiple ground symbols:

Figure 2.12 – Alternative schematic diagrams of the breadboard circuit in Figure 2.7

Although our alternative schematic diagram looks like two separate circuits, they
are electrically connected exactly the same as our original schematic diagram
in Figure 2.8.

Please take a moment now to examine both Figure 2.8 and Figure 2.12 and see
whether you can work out how the two diagrams are electrically the same.



All I have done here is broken the line (labeled gnd in Figure 2.8) and redrawn the
push button subcircuit and LED/resistor subcircuit in a different orientation and
used separate ground symbol for each subcircuit.

As mentioned previously, at this stage of this book, we do not go into how or why
this circuit works electronically or how it interacts electrically with the GPIO pins
on your Raspberry Pi. We'll cover these topics and many more with practical and
illustrative exercises when we reach Chapter 6, Electronics 101 for the Software
Engineer.

Now that you have seen the schematic diagram that documents our breadboard
circuit and see how they relate to one another, we're finally ready to dive into code
and learn two ways to make our LED flash in Python!

Exploring two ways to flash an LED in
Python
In this section, we will investigate two alternative GPIO libraries and ways to
make an LED flash in Python, including the following:

The GPIOZero library: An entry-level GPIO library
The PiGPIO library: An advanced GPIO library

As we learn to use these two libraries, we will see how they approach GPIO
control differently and discover their relative strengths and weaknesses.

After completing this section (and the following section, Exploring two ways to
integrate a push button in Python), you will have explored and compared two very
different approaches to GPIO control—the high-level (using GPIOZero) and a
lower-level (using PiGPIO)—and have a good introductory grasp of when and how
you would choose between the alternative when building an electronic interfacing
program.

Let's start our practical exercises by making the LED blink using GPIOZero.

Blinking with GPIOZero



We are now ready to investigate our first blinking method using the GPIOZero
library. You will find the code we are about to cover in
the chapter02/led_gpiozero.py file. Please review this file before proceeding.

In the Further reading section, you will find relevant links to the GPIOZero API documentation
for the specific features of this library that we use in this section.

We will start by running our example code.

Run the program using the following command, remembering that you need to be
in the activated virtual environment (if you need a refresher on how to activate a
Python virtual environment, see Chapter 1, Setting Up Your Development
Environment):

(venv) $ python led_gpiozero.py

If the LED is connected correctly, it should blink.

If you receive an error about PiGPIO when you run the program, make sure you have enabled
the pigpio daemon as outlined in Chapter 1, Setting Up Your Development Environment. We'll talk
more about PiGPIO and the PiGPIO daemon in Chapter 5, Connecting Your Raspberry Pi to the
Physical World.

Now that we have run the code and seen the LED blink, it's time to look through
the code that makes this happen.

Imports

We will start our code exploration by looking at the external libraries we are
importing in our Python program. They appear near the top of the source file, as
shown here:

from gpiozero import Device, LED                # (1)

from gpiozero.pins.pigpio import PiGPIOFactory  # (2)

from time import sleep

 The imports of interest are the following:

At line (1), we import the Device and LED classes from the GPIOZero package.
At line (2), we are importing a GPIOZero Pin Factory. This is used together
with the Device class, which we'll see next.

Next, we see how to set the GPIOZero Pin Factory implementation.



Pin Factory configuration

A Pin Factory is used in GPIOZero specify which concrete GPIO library
GPIOZero will use to perform the actual GPIO work. We will discuss Pin Factories
in more detail when we compare the GPIOZero and PiGPIO examples later in
this chapter in the Comparing the GPIOZero and PiGPIO examples section:

Device.pin_factory = PiGPIOFactory()  # (3)

On line (3), we are telling GPIOZero to use PiGPIO as its Pin Factory using
the Device and PiGPIOFactory imports. 

Now that we've seen how a Pin Factory is set up, let's look at the code that makes
our LED blink.

Blinking the LED

Here, we see the LED class at line (4) in the following is created and assigned to
the led variable. The parameter to LED is the GPIO pin that the physical LED is
connected to, as per the breadboard in Figure 2.1:

GPIO_PIN = 21 

led = LED(GPIO_PIN)         # (4)

led.blink(background=False) # (5)

On line (5), we start the LED blinking. The background=False parameter to blink() is
needed to run the LED on the main thread so the program does not exit (an
alternative of background=True would be to use signal.pause(). We'll see an example of
this in the next section).

GPIOZero makes it very easy to interface with common electronic components
such as an LED. Next, we will perform the same exercise, only this time using the
PiGPIO library.

Blinking with PiGPIO

Now that we have seen how to blink our LED using the GPIOZero library, let's
look at an alternative method using the PiGPIO library.

The code we are about to walk through is contained in
the chapter02/led_pigpio.py file. Terminate the previous example if it is still running,



and run led_pigpio.py. The LED should blink again.

In the Further reading section, you will find relevant links to the PiGPIO API documentation for
the specific features of this library that we are using in this section.

Let's walk through the PiGPIO version of our LED blinking code.

Imports

Starting at the top of the file, we have the import section of the source file:

import pigpio           # (1)

from time import sleep

This time around, on line (1), we only need to import the PiGPIO module.

Next, we will see how to configure PiGPIO and set the I/O mode on the GPIO pin
that is connected to our LED.

PiGPIO and pin configuration

Let's look at the code that configures PiGPIO and the LED's GPIO pin:

GPIO_PIN = 21

pi = pigpio.pi()                        # (2)

pi.set_mode(GPIO_PIN, pigpio.OUTPUT)    # (3)

We create an instance of PiGPIO on line (2) and assign it to the pi variable. We use
this variable to interact with the PiGPIO library from this point forward in
the code.

On line (3), we configure GPIO pin 21 to be an output pin. Configuring a pin
as output means we want to use that pin to control something connected to it from
our Python code. In this example, we want to control the LED. Later in this
chapter, we'll see an example of an input pin used to respond to button presses.

Now that we have imported our required libraries and configured PiGPIO and the
out GPIO pin, let's now see how we are making the LED blink.

Blinking the LED

Finally, we make our LED blink:



while True:

 pi.write(GPIO_PIN, 1) # 1 = High = On    # (4)

 sleep(1) # 1 second

 pi.write(GPIO_PIN, 0) # 0 = Low = Off    # (5)

 sleep(1) # 1 second

We achieve the blinking with PiGPIO using a while loop. As the loop executes, we
are toggling GPIO pin 21— our output pin—on and off (lines (4) and (5)), with a
short sleep() function in between, hence making the LED appear to blink.

Next, we will compare our two libraries and their different approaches to blinking
the LED.

Comparing the GPIOZero and PiGPIO examples

If you look at the code for the GPIOZero example, it's pretty obvious we're making
an LED blink—it's pretty explicit in the code. But what about the PiGPIO
example? There is no mention of LEDs or blinking. In truth, it could be doing
anything—it's just we know an LED is connected to GPIO 21.

Our two blinking examples reveal important aspects of GPIOZero and PiGPIO:

GPIOZero is a higher-level wrapper library. On the surface, it abstracts
common electronic components such as LEDs into simple-to-use classes
while, underneath, it is delegating the actual interfacing work to a concrete
GPIO library.

PiGPIO is a lower-level GPIO library where you work with, control, and
access GPIO pins directly.

The "zero" in GPIOZero refers to a naming convention for zero boilerplate code libraries where
all of the complex internals are abstracted away to make it easier for beginners to get started.

GPIOZero performs its delegation to an external GPIO library using a Pin Factory.
In our example, we delegated to PiGPIO using the line, Device.pin_factory =
PiGPIOFactory(). We'll pick up the topic of GPIOZero and delegation again in Chapter
5, Connecting your Raspberry Pi to the Physical World.

As we proceed through this book, we will be using both GPIOZero and PiGPIO.
We'll use GPIOZero to simplify and condense code where appropriate, while we
will be using PiGPIO for more advanced code examples and to teach core GPIO
concepts that are otherwise abstracted away by GPIOZero.



Next, we will continue building on our LED blinking examples by integrating the
push button.

Exploring two ways to integrate a push
button in Python
In the previous section, we explored two different approaches to making our LED
blink—one using the GPIOZero library and the other with the PiGPIO library. In
this section, we will integrate the push button from the circuit in Figure 2.1 with
Python and see how we can integrate the button using both the GPIOZero and
PiGPIO libraries.

We will start by making our LED turn on and off with a button that is integrated
using the GPIOZero library.

Responding to a button press with GPIOZero

The code we are about to cover is included in
the chapter02/button_gpiozero.py file. Please review and run this file. The LED should
turn on and off as you press the button. As per the circuit in Figure 2.1, the LED is
still connected to GPIO 21, while our button is connected to GPIO 23.

As mentioned previously in the Creating a breadboard circuit section, if your button has four legs
(two sets will be electrically joined) and your circuit does not work, try rotating the button in the
breadboard 90 degrees.

Let's walk through the significant parts of the code, noting that we are
skipping sections of code that we've already covered.

Imports

Starting at the top of the source file, you will find the section of code where we
import external libraries, as shown here:

from gpiozero import Device, LED, Button         # (1)

from gpiozero.pins.pigpio import PiGPIOFactory

import signal                                    # (2)



For this example, we have also imported the GPIOZero Button class (1) and the
Python signal module (2).

Now that you have seen that we are importing the Button class, let's look at the
handler function that will be called when the button is pressed.

Button pressed handler

We are using a callback handler to respond to button presses, defined in the
pressed() function:

def pressed():

    led.toggle()                               # (3)

    state = 'on' if led.value == 1 else 'off'  # (4)

    print("Button pressed: LED is " + state)   # (5)

On line (3), our LED is turned on and off each time pressed() is invoked using the
toggle() method of led. On line (4), we query the value property of led to determine
whether the LED is on (value == 1) or off (value == 0) and store it in the state
variable, which we print to the Terminal on line (5).

You can also control the LED with the led.on(), led.off(), and led.blink() methods. You can also
directly set the LED on/off state by setting led.value, for example, led.value = 1 will turn the LED
on.

Let's continue and see how to create and configure a Button class instance and
register the pressed() function so it is called when you press the physical button.

Button configuration

Following are the lines used to configure the push button. On line (6), the class we
use is Button. In GPIOZero, we use a Button class for any input device that can be
either on or off, such as buttons and switches:

button = Button(BUTTON_GPIO_PIN, 

                pull_up=True, bounce_time=0.1)  # (6)

button.when_pressed = pressed                   # (7)

On line (7), we register the pressed() callback handler with our button instance.

Here are the meanings of the parameters to the Button constructor on line (6):

The first parameter is the button's GPIO pin (BUTTON_GPIO_PIN == 23).



The second parameter, pull_up=True, enables an internal pull-up resistor for
GPIO 23. Pull-up and pull-down resistors are an important concept in digital
electronics. We're are going to skip over this concept for now because we will
be covering the importance and use of pull-up and pull-down resistors in
greater detail in Chapter 6, Electronics 101 for the Software Engineers.
The third parameter bounce_time=0.1 (0.1 seconds), is used to compensate for an
occurrence known as switch or contact bounce.

Bounce is a type of electrical noise that occurs as the metal contacts within a
physical button or switch come together. The result of this noise is seen as a rapid
succession of on-off (or high-low) states changes on a digital input pin. This is
undesirable because we want one physical press of a button (or toggle of a switch)
to be seen as one state change on the input pin. This is commonly achieved in code
using a debounce threshold or timeout, which in our case is the amount of
time that our Raspberry Pi ignores successive pin stage changes following an
initial state change.

Try setting bounce_time=0 (no debouncing). You should find that the button behaves
very erratically. Then, use a higher number such as bounce_time=5 (5  seconds), and
you will find that after the first press the button is non-responsive until the duration
expires.

When it comes to push buttons, selecting an appropriate debounce threshold is a matter of
balancing how rapidly a user needs to press the button (this demands lower thresholds) versus
how much bounce is inherent in your button (this demands higher thresholds). About 0.1 seconds
is a good suggested starting value.

Finally, let's cover a common technique that is used to prevent an electronic-
interfacing Python program from exiting.

Preventing the main thread from terminating

It's common to see the use of signal.pause() or an equivalent construct in GPIO
examples and programs: 

signal.pause() # Stops program from exiting.  # (8)

Line (8) prevents the main program thread from reaching its natural end, which
under normal circumstances is where the program terminates.

Forgetting to add signal.pause() to the end of a GPIO-interfacing Python program is a common
and often confusing mistake when starting out. If your program exits immediately after it's
started, try adding signal.pause() at the end of your program as a first step.



We didn't need signal.pause() with our previous LED flashing examples. Here is
why:

Our GPIOZero example (chapter02/led_gpiozero.py) used background=False in the
LED constructor. This prevented our program from exiting by keeping the
LED's thread in the foreground.
In the PiGPIO example (chapter02/led_pigpio.py), it's the while loop that prevents
the program from exiting.

If this seems confusing, don't worry! Knowing how to prevent a program from
existing abnormally all comes down to experience, practice, and understanding
how Python and GPIO libraries work.

Next, let's see how to integrate the button using PiGPIO.

Responding to a button press with PiGPIO

We will now replicate the same functionality as our previous GPIOZero example
to turn our LED on and off with a button press, only this time using the PiGPIO
library. The code for our PiGPIO example can be found in
the chapter02/button_pigpio.py file. Please review and run this file now, and confirm
that the LED responds to your button presses.

Let's unravel the interesting parts of the code, starting with the GPIO pin
configuration for the push button (again, noting that we're skipping sections of
code that we've already covered).

Button pin configuration

Starting on line (1), we configure GPIO pin 23 (BUTTON_GPIO_PIN == 23) as
an input pin:

pi.set_mode(BUTTON_GPIO_PIN, pigpio.INPUT)           # (1)

pi.set_pull_up_down(BUTTON_GPIO_PIN, pigpio.PUD_UP)  # (2)

pi.set_glitch_filter(BUTTON_GPIO_PIN, 10000)         # (3)

Next, on line (2), we enable an internal pull-up resistor for pin 23. In PiGPIO, we
debounce the push button on line (3) using the pi.set_glitch_filter() method. This
method takes the parameter in milliseconds.



Notice, in PiGPIO, we needed to configure each property for our button (pin input
mode, a pull-up resistor, and debouncing) as a discrete method call, whereas in the
previous GPIOZero example this all occurred on a single line when we created an
instance of the GPIOZero LED class.

Button pressed handler

Our button callback handler is defined at starting on line (4) and is more involved
than the previous GPIOZero handler:

def pressed(gpio_pin, level, tick):                         # (4)

    # Get current pin state for LED.

    led_state = pi.read(LED_GPIO_PIN)                       # (5)

    if led_state == 1:                                      # (6)

        # LED is on, so turn it off.

        pi.write(LED_GPIO_PIN, 0) # 0 = Pin Low = Led Off

        print("Button pressed: Led is off")

    else: # 0

        # LED is off, so turn it on.

        pi.write(LED_GPIO_PIN, 1) # 1 = Pin High = Led On

        print("Button pressed: Led is on")

# Register button handler.

pi.callback(BUTTON_GPIO_PIN, pigpio.FALLING_EDGE, pressed)  # (7)

Notice the signature of pressed(gpio_pin, level, tick). Our previous GPIOZero
version has no parameters while PiGPIO has three mandatory parameters. Our
simple one-button example does not use these parameters; however, for
completeness they are as follows:

gpio_pin: This is the pin responsible for invoking the callback. This will be 23
in our example.
level: This the state of the pin. For us, this will be pigpio.FALLING_EDGE (we'll see
why shortly).
tick: This is the number of microseconds since boot.

On line (5), we read the current state of GPIO 21 (our LED) into a variable with
led_state = pi.read(). Then, starting on line (6), depending on whether the LED is
currently on (led_state == 1) or off (led_state == 0), we set the GPIO 21 high or low
using pi.write() to toggle the LED to its inverse on or off state. 

Finally, the callback handler is registered on line (7). The parameter
value, pigpio.FALLING_EDGE, means the call handler is pressed() whenever the GPIO
pin, BUTTON_GPIO_PIN, (that is, 23) starts to transition from a digital high to a digital
low. This is a lot more explicit than simply testing whether a pin is high or low;



however, for simplicity, consider the following level parameter options to
pi.callback(). Try changing the parameter and see what happens when you press the
button:

pigpio.FALLING_EDGE: This is low (think falling toward low). pressed() is called
when you press the button. 
pigpio.RAISING_EDGE: This is high (think raising toward high). pressed() is called
when you release the button. 
pigpio.EITHER_EDGE: This can be high or low. pressed() is called when you
both press and release the button, effectively meaning the LED will only
illuminate when you hold down the button.

Did you notice or think at any stage in the PiGPIO example that when the button is
pressed—that is, you activated the button—GPIO pin 23 becomes low (that is, the
pigpio.FALLING_EDGE parameter on line (7)), and this results in pressed() begin called?
Did this seem a bit back-to-front or false from a programming perspective? We'll
revisit this idea and discuss the reasons behind it in Chapter 6, Electronics 101 for
the Software Engineer.

That's enough on GPIO libraries and electronics for now. We've seen how to
respond to button presses with both the GPIOZero and PiGPIO libraries. In
particular, we saw that the GPIOZero approach was rather simple and
straightforward compared to the PiGPIO approach, which involved more code and
more configuration. This is the same outcome we discovered in the previous
section, Exploring two ways to flash an LED in Python—that is, the GPIOZero
approach was simpler.

Is one approach better than the other? The answer to that all depends on what goal
you are trying to achieve and how much lower-level control you require over your
electronic interfacing to achieve that goal. At this stage of this book, I just wanted
to give you contrasting options regarding GPIO libraries and how we interface
them with electronics. We'll be picking this topic up again in greater detail when
we revisit popular GPIO libraries for Python in Chapter 5, Connecting Your
Raspberry Pi to the Physical World.

Let's move on and create an IoT program to control our LED over the internet.

Creating your first IoT program



We are about to create a Python program to integrate with a service called dweet.io.
This is how their website describes the service: "it's like Twitter for social
machines."

We will create simple dweets, which are the dweet.io equivalent of a tweet, by
pasting a URL into a web browser.

Our program will monitor and receive our dweets by polling a dweet.io RESTful
API endpoint for data. As data is received, it will be parsed to find an instruction
specifying whether our LED should be turned on or off or made to blink. Based on
this instruction, our LED state will be changed using the GPIOZero library. We'll
have a look at data format received from dweet.io when we discuss the program's
code in a subsequent section titled Understanding the server code.

We're using the free public dweet.io service where all information is publicly accessible, so do not
publish any sensitive data. There is a professional service available at dweetpro.io that provides
data privacy, security, dweet retention, and other advanced features.

The code for this program is contained in the chapter02/dweet_led.py file. Read
through the source code in this file to get a broad perspective about what's
happening before continuing.

Running and testing the Python server

In this section, we will run and interact with a Python server program that will let
us control our LED from a web browser by copying and pasting links. Once we
have used the program to control our LED, we'll then delve into the mechanics of
the code and how it works in the next section.

Here are the steps to follow:

1. Run the chapter02/dweet_led.py program. You should see output similar to the
following:

(venv) $ python dweet_led.py

INFO:main:Created new thing name a8e38712                  # (1)

LED Control URLs - Try them in your web browser:

 On    : https://dweet.io/dweet/for/a8e38712?state=on      # (2)

 Off   : https://dweet.io/dweet/for/a8e38712?state=off

 Blink : https://dweet.io/dweet/for/a8e38712?state=blink

 

INFO:main:LED off

Waiting for dweets. Press Control+C to exit.

http://dweet.io/
http://dweet.io/
http://dweetpro.io/


On line (1), the program has created a unique name for our thing to use
with dweet.io. You'll notice this name in the URLs starting on line (2). The
name created for your thing will be different from the preceding example.

A thing name in dweet.io is analogous to an @handle on Twitter.

2. Copy and paste the URLs at starting on line (2) into a web browser (it could
be a computer other than your Raspberry Pi). After a short delay, the LED
should change its state (on, off, or blinking) depending on the URL used.

Once you have confirmed that the LED is controllable using the URLs, we will
proceed and look at the program.

Understanding the server code

In this section, we will step through the major parts of the dweet_led.py program and
discover how it works, starting with the imports.

Imports

First, at the start of the source code file, we see the Python imports:

...truncated...

import requests     # (1)

There is one specific import I want to draw your attention to. On line (1), we are
importing the request module (this was installed earlier in this chapter when you
ran pip install -r requirements.txt). requests is a high-level library for making HTTP
requests in Python. Our program uses this module to communicate with the
dweet.io APIs, which we'll see shortly.

Now that we understand that we are importing and will later use the requests
library, let's cover the global variables used in our program.

Variable definitions

Next, we define several global variables. For now, review the following comments
for their purposes. You'll see them being used as we progress through the code:

LED_GPIO_PIN = 21                  # LED GPIO Pin

THING_NAME_FILE = 'thing_name.txt' # Thing name file



URL = 'https://dweet.io'           # Dweet.io service API

last_led_state = None              # "on", "off", "blinking"

thing_name = None                  # Thing name

led = None                         # GPIOZero LED instance

As you read through the master source file, following these variable definitions,
you'll also notice that we are using the Python logging system instead of print()
statements:

logging.basicConfig(level=logging.WARNING)

logger = logging.getLogger('main') # Logger for this module

logger.setLevel(logging.INFO) # Debugging for this file.   # (2)

If you need to turn on debugging for the program to diagnose a problem or to see
the raw JSON data exchanged between our program and the dweet.io service,
change line (2) to logger.setLevel(logging.DEBUG).

Next, we will step through the significant methods in the program and see what
they do.

The resolve_thing_name() method

The resolve_thing_name() method is responsible for loading or creating a unique name
for our thing for use with dweet.io.

Our intention when using this method is to always reuse a name so that our dweet
URLs for controlling our LED remain the same between the program restarts:

def resolve_thing_name(thing_file):

    """Get existing, or create a new thing name"""

    if os.path.exists(thing_file):                     # (3)

        with open(thing_file, 'r') as file_handle:

            name = file_handle.read()

            logger.info('Thing name ' + name + 

                        ' loaded from ' + thing_file)

            return name.strip()

    else:

        name = str(uuid1())[:8]                        # (4)

        logger.info('Created new thing name ' + name)

        with open(thing_file, 'w') as f:               # (5)

            f.write(name)

    return name

On line (3), we load a name stored previously in thing_file if the file exists;
otherwise, we use the Python UUID module method uuid1() on line (4) to create an 8-
character unique identifier and use that as the thing name. We store this newly
created identifier-cum-name in thing_file on line (5).



Next, we will look at the function that retrieves the last dweet made to our thing.

The get_lastest_dweet() method

get_lastest_dweet() queries the dweet.io service to retrieve the latest dweet (if any)
made for our thing. Following is an example of the JSON response we expect to
receive. It is the content.state property on line (1) that we are ultimately interested
in:

{

  this: "succeeded",

  by: "getting",

  the: "dweets",

  with: [

    {

      thing: "a8e38712-9886-11e9-a545-68a3c4974cd4",

      created: "2019-09-16T05:16:59.676Z",

      content: {                                               

        state: "on"                                       # (1)

      }

    }

  ]

}

Looking at the following code, we see, on line (6), the creation of the resource
URL used to query the dweet.io service. A call to this URL will return us a JSON
similar to that shown in the preceding. You will find a link in the Further reading
section to the complete dweet.io API reference.

Next, on line (7), the requests module use used to make an HTTP GET request to
retrieve the latest dweet: 

def get_lastest_dweet():

    """Get the last dweet made by our thing."""

    resource = URL + '/get/latest/dweet/for/' + thing_name   # (6)

    logger.debug('Getting last dweet from url %s', resource)

    r = requests.get(resource)                               # (7)

Starting on line (8) in the following, we check whether the request succeeded at the
HTTP protocol level. If successful on line (9), we then proceed to parse the JSON
response and extract and return the content property starting on line (10):

    if r.status_code == 200:                              # (8)

        dweet = r.json() # return a Python dict.

        logger.debug('Last dweet for thing was %s', dweet)

        dweet_content = None

        if dweet['this'] == 'succeeded':                  # (9)

            # Interested in the dweet content property.

            dweet_content = dweet['with'][0]['content']   # (10)



        return dweet_content

    else:

        logger.error('Getting last dweet failed 

                     with http status %s', r.status_code)

        return {}

Our next method to cover is poll_dweets_forever(), which will use get_lastest_dweet().

The poll_dweets_forever() method

poll_dweets_forever() is a long-running function that periodically calls on line (11)
the get_lastest_dweet() method we just covered. When a dweet is available, it is
handled on line (12) by process_dweet(), which we will discuss shortly:

def poll_dweets_forever(delay_secs=2):

    """Poll dweet.io for dweets about our thing."""

    while True:

        dweet = get_last_dweet()                        # (11)

        if dweet is not None:

            process_dweet(dweet)                        # (12)

    sleep(delay_secs)                                   # (13)

We sleep for a default delay of 2 seconds on line (13) before continuing the loop.
Practically, this means there will be up to an approximate 2-second delay between
using one of the dweeting URLs to request a LED state change and the LED
altering its state.

At this point in the master source file, you will come across a function named
stream_dweets_forever().  This is an alternative and more efficient stream-based method of
accessing dweets in real time using HTTP streaming.

The polling-based approach of poll_dweets_forever() was chosen here for discussion for simplicity.
It will become clear as you read on where you can switch approaches.

Our next stop is the method we use to control the LED.

The process_dweet() method

As we saw previously when poll_dweets_forever() (similar to stream_dweets_forever())
gets a dweet, it parses out the content property from the dweet's JSON. This is then
passed to process_dweet() for handling, where we extract the state child property
from the content property:

def process_dweet(dweet):

    """Inspect the dweet and set LED state accordingly"""

    global last_led_state



    if not 'state' in dweet:

        return

    led_state = dweet['state']                         # (14)

    if led_state == last_led_state:                    # (15)

        return; # LED is already in requested state.

On line (15) (and (17) in the subsequent code block), we test for and maintain the
LED's last known state and avoid interacting with the LED if it's already in the
requested state. This will avoid potential visual glitching of the LED that can occur
if it's repeatedly put into a blinking state when already blinking.

The core of process_dweet() is to access the state property of the dweet and change
the LED's state, which starts on line (16):

    if led_state == 'on':                 # (16)

        led_state = 'on'

        led.on()

    elif led_state == 'blink':

        led_state = 'blink'

        led.blink()

    else: # Off, including any unhanded state.

        led_state = 'off'

        led.off()

     last_led_state = led_state           # (17)

     logger.info('LED ' + led_state)

Following line (16), we set the LED state based on the dweet (remember the
led variable is a GPIOZero LED instance) before keeping track of the new state on
line (17), as mentioned, for subsequent testing when process_dweet() is called on line
(15).

Thanks to the simplicity of GPIOZero, our LED controlling code only makes a
fleeting appearance in the code!

We will conclude by covering the program's main entry point.

The main program entry point

At the end of the source file, we have the following code:

# Main entry point

if __name__ == '__main__':

    signal.signal(signal.SIGINT, signal_handler) # Capture CTRL + C

    print_instructions()                              # (18)

    # Initialize LED from last dweet.

    latest_dweet = get_latest_dweet()                 # (19)

    if (latest_dweet):

        process_dweet(latest_dweet)



    print('Waiting for dweets. Press Control+C to exit.')

    #Only use one of the following.

    #stream_dweets_forever() # Stream dweets real-time.                     

    poll_dweets_forever() # Get dweets by polling.    # (20)

On line (8), print_instructions()  is responsible for printing the sweet URLs to the
Terminal, while on line (19), we see a call to get_latest_dweet(). This call initializes
our LED to the last dweeted state when the program starts. Finally, on line (20), we
start polling the dweet.io service to access the latest dweets. It's here you swap the
dweet polling method to the streaming method.

This now completes our walk-through of dweet_led.py. Through this discussion, we
have now seen how to leverage the dweet.io service to create a simple and
functional IoT program. Before we complete this chapter, I want to leave you with
two bonus source code files that you can use to extend your IoT program.

Extending your IoT program
The following two files in the chapter02 folder complement what we have covered
in this chapter by combining the concepts we have learned. As the overall code and
approach are similar to what we have already covered, we will not go through the
code in detail:

dweet_button.py provides an implementation showing how to use a push button
to create a dweet with the dweet.io service. This will let you change your
LED state with the press of a button.
pigpio_led_class.py provides a code-level example of how a low-level library
like PiGPIO relates to a high-level library like GPIOZero.

We'll start by discussing dweet_button.py.

Implementing a dweeting button

This program in dweet_button.py integrates the GPIOZero push button example with
dweet.io. Earlier in this chapter, in the section titled Running and testing the
Python server, we copied and pasted URLs into a web browser to control our LED.

When you run dweet_button.py, each time you press the button, this program cycles
through the dweet.io URLs to change the LED's state. To configure this program,



find and update the following line with the thing name you are using
with dweet_led.py:

thing_name = '**** ADD YOUR THING NAME HERE ****'

Remember, that you'll also need the dweet_led.py program to be running in a
Terminal, otherwise, the LED will not respond to your button presses.

Next, we see how to mimic GPIOZero using PiGPIO and a Python class.

PiGPIO LED as a class

In the pigpio_led_class.py file, we have a Python class that is a re-engineering of the
PiGPIO LED example to wrap it as a class that mimics the GPIOZero LED class. It
demonstrates the basic principle of how GPIOZero abstracts away lower-level
GPIO complexity. This re-engineered class can be used as a drop-in replacement
for the GPIOZero LED examples in this chapter, as shown here. See the header
comments in pigpio_led_class.py for more information:

""" chapter02/dweet_led.py """

...

# from gpiozero import LED                    # Comment out import

from pigpio_led_class import PiGPIOLED as LED # Add new import

I hope you find these two bonus files interesting, and that by exploring the PiGPIO
LED as a class example, you can better appreciate how the higher-level GPIOZero
library and lower-level PiGPIO library relate to one another.

At this stage of your journey, if you are a little unclear about what's happening
with pigpio_led_class.py, do not get worried. I wanted to simply set out a
brief example of GPIO library interactions for you to ponder in the context of an
end-to-end application, as this will serve as a point of reference as you continue
reading. We'll be covering the GPIOPZero and PiGPIO libraries (plus others) in
greater detail in Chapter 5, Connecting Your Raspberry Pi to the Physical World,
plus we'll be covering more advanced concepts such as threading in electronic
interfacing programs (similar to the use of threads in pigpio_led_class.py) in Chapter
12, Advanced IoT Programming Concepts – Threads, AsyncIO, and Event Loops.

Summary



Through this chapter, you've just created a real functional IoT application using a
Raspberry Pi and Python. We saw two alternative ways to flash a LED and read a
button press in Python using both the GPIOZero and PiGPIO GPIO libraries. We
also compared the use of these libraries and saw that GPIOZero takes a higher-
level and more abstract approach to coding and GPIO control than does the lower-
level PiGPIO library. We also connected the LED to the internet using the online
dweet.io service. Using simple URLs, we were able to turn on and off and blink
the LED by simply visiting the URLs in a web browser.

As you proceed through the subsequent chapters in this book, we'll be building on
and going deeper into the core knowledge you have learned in this chapter about
GPIO interfacing, electronic circuits, and controlling a circuit over the internet. We
will learn alternative approaches to building an application to those we have
covered in this chapter and discover the core principles related to GPIO control
and electronic interfacing. Equipped with this deepening knowledge, you'll be able
to create even more powerful and grand IoT solutions by the time you complete
this book!

In Chapter 3, Networking with RESTful APIs and Web Sockets Using Flask, we will
be looking at the popular Flask microservices framework, and we will create two
Python-based web servers and accompanying web pages to control the LED over a
local network or the internet.

Questions 
Here is a list of questions for you to test your knowledge regarding this chapter's
material. You will find the answers in the Assessments section of the book:

1. You don't have the correct resistor value. Can you just substitute another value
resistor that you have lying around? 

2. The GPIOZero package is a compete GPIO library. Is it all you'll ever need?
3. Should you always use the built-in Python packages for networking wherever

possible?
4. True or false: an LED is unbiased, meaning it can be plugged into a circuit

any way around and still work. 
5. You are building an IoT application that interacts with other existing

networked devices and it times out. What could be the problem?
6. What Python module and function can be used to stop a program exiting?



Further reading
We connected our LED to the internet using the dweet.io service and called its
RESTful APIs, which are documented at the following:

Dweet.io API documentation:  https://dweet.io

You may wish to familiarize yourself with the GPIOZero library briefly to get an
idea about what it can do. It's well documented with heaps of examples. Here are a
couple of useful links to relevant parts of the API documentation that we've
covered so far:

GPIOZero home page: https://gpiozero.readthedocs.io
Output Devices (LED): https://gpiozero.readthedocs.io/en/stable/api_output.html
Input Devices (Button): https://gpiozero.readthedocs.io/en/stable/api_input.html

Regarding PiGPIO, here are the relevant parts of its API documentation. You'll
notice that PiGPIO is a more advanced GPIO library with less verbose
documentation.

The PiGPIO Python home page: http://abyz.me.uk/rpi/pigpio/python.html
The read() method: http://abyz.me.uk/rpi/pigpio/python.html#read
The write() method: http://abyz.me.uk/rpi/pigpio/python.html#write
The callback() method: http://abyz.me.uk/rpi/pigpio/python.html#callback
set_glitch_filter(): https://abyz.me.uk/rpi/pigpio/python.html#set_glitch_filter

Resistors are a very common electronic component. The following resources
provide an overview of resistors and how to read their color bands to determine
their resistance value in Ohms:

Resistor overview: https://www.electronics-tutorials.ws/resistor/res_1.html 
Reading color bands: https://www.electronics-tutorials.ws/resistor/res_2.html

The following Spark Fun tutorial provides an excellent introduction to reading
schematic diagrams:

How to Read a Schematic Diagram: https://learn.sparkfun.com/tutorials/how-to-re
ad-a-schematic/all

https://dweet.io/
https://gpiozero.readthedocs.io/en/stable/api_output.html
https://gpiozero.readthedocs.io/en/stable/api_output.html
https://gpiozero.readthedocs.io/en/stable/api_input.html
http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/python.html#read
http://abyz.me.uk/rpi/pigpio/python.html#write
http://abyz.me.uk/rpi/pigpio/python.html#callback
https://abyz.me.uk/rpi/pigpio/python.html#set_glitch_filter
https://www.electronics-tutorials.ws/resistor/res_1.html
https://www.electronics-tutorials.ws/resistor/res_2.html
https://learn.sparkfun.com/tutorials/how-to-read-a-schematic/all


Networking with RESTful APIs and
Web Sockets Using Flask

In Chapter 2, Getting Started with Python and IoT, we created a networked
IoT application based on dweet.io where you controlled an LED connected to
your Raspberry Pi over the internet. Our first IoT application was driven
purely by making API requests.

In this chapter, we will turn our attention to alternative approaches to
creating networked services in Python that can be accessed by both Python
and non-Python clients. We will be looking at how to build a RESTful API
server and a Web Socket server in Python and applying the electronic
interfacing techniques we learned in the previous chapter to make them
interact with our LED.

After completing this chapter, you will have an understanding of two
different approaches to building servers with Python, complete with
accompanying web pages that interact with the servers. These two servers
will provide you with an end-to-end reference implementation that you can
use as a starting point for your own network-connected IoT projects. 

Since this chapter is about networking techniques, we will continue with our
GPIOZero-based LED from the preceding chapter merely for simplicity and
abstraction so that our examples are to-the-point and network-focused and
not cluttered by GPIO-related code.

In this chapter, we will cover the following topics: 

Introducing the Flask microservices framework
Creating a RESTful API service with Flask
Adding a RESTful API client web page
Creating a Web Socket service with Flask-SocketIO
Adding Web Socket client web page
Comparing the RESTful API and Web Socket servers



Technical requirements
To perform the exercises in this chapter, you will need the following:

Raspberry Pi 4 Model B
Raspbian OS Buster (with desktop and recommended software)
A minimum of Python version 3.5

These requirements are what the code examples in this book are based on.
It's reasonable to expect that the code examples should work without
modification on a Raspberry Pi 3 Model B or a different version of Raspbian
OS as long as your Python version is 3.5 or higher.

You will find this chapter's source code in the chapter03 folder in the GitHub
repository available here: https://github.com/PacktPublishing/Practical-Python-Prog
ramming-for-IoT.

You will need to execute the following commands in a Terminal to set up a
virtual environment and install Python libraries required for the code in this
chapter:

$ cd chapter03              # Change into this chapter's folder

$ python3 -m venv venv      # Create Python Virtual Environment

$ source venv/bin/activate  # Activate Python Virtual Environment

(venv) $ pip install pip --upgrade        # Upgrade pip

(venv) $ pip install -r requirements.txt  # Install dependent packages

The following dependencies are installed from requirements.txt:

GPIOZero: The GPIOZero GPIO library (https://pypi.org/project/gpiozer
o)
PiGPIO: The PiGPIO GPIO library (https://pypi.org/project/pigpio)
Flask: The core Flask microservices framework (https://pypi.org/project/
Flask)
Flask-RESTful: A Flask extension for creating RESTful API services 
(https://pypi.org/project/Flask-RESTful)
Flask-SocketIO: A Flask extension for creating Web Socket services (h
ttps://pypi.org/project/Flask-SocketIO)

https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://pypi.org/project/gpiozero
https://pypi.org/project/pigpio
https://pypi.org/project/Flask
https://pypi.org/project/Flask-RESTful
https://pypi.org/project/Flask-SocketIO


We will be working with the breadboard circuit we created in Chapter 2,
Getting Started with Python and IoT, Figure 2.7.

Introducing the Flask microservices
framework
Flask is a popular and mature microservices framework for Python that you
can use for creating APIs, websites, and just about any other networked
service you can imagine. Flask is certainly not the only option available for
Python, even though its maturity, range of add-ons, and extensions plus the
availability of quality documentation and tutorials make it an excellent
choice.

We could conceivably do all of the following coding exercises in this chapter
using just the core Flask framework; however, there are quality extensions
that will make our life much easier. These extensions are Flask-RESTful for
creating RESTful API services and Flask-SocketIO for building Web
Socket services. 

The official API documentation for Flask-RESTful and Flask-SocketIO (or any Flask
extension for that matter) generally assume existing knowledge of the core Flask
framework, classes, and terminology. If you can't seem to find answers to your questions
in an extension's documentation, remember to check the core Flask API documentation
also. You'll find a link to this documentation in the Further reading section.

Let's commence and create a RESTful API service in Python using Flask-
RESTful.

Creating a RESTful API service
with Flask-RESTful
In this section, we will explore our first Python-based server, which will be a
RESTful API server implemented using the Flask-RESTful framework for



Python.

A RESTful API (REST stands for Representational State Transfer) is a
software design pattern used for building web service APIs. It's a flexible
pattern that is both technology- and protocol-independent. Its technology
independence helps to promote interoperability between different
technologies and systems, including different programming languages. And
although it does promote protocol independence, it's frequently and almost
always by default (or, at the least, assumed to be) built on top of the HTTP
protocol used by web servers and web browsers.

RESTful APIs are the most common technique used today for building web
services and APIs. In fact, it's so common that many people learn about them
and use the design pattern without ever understanding what they are! If you
are new to RESTful APIs, you will a link in the Further reading section,
which I encourage you to review as a primer before proceeding.

Our focus in this section will be on controlling an LED with a RESTful API
and understanding how this is implemented using Python and the Flask-
RESTful framework. After completing this section, you will be able to
leverage this RESTful API server a starting point for your own IoT projects
and integrate it with other electronics, especially as learn more about
electronic actuators and sensors in part 3 of this book, IoT Playground.

For the examples in this chapter, we will assume you are working and accessing the
Flask-based servers locally on your Raspberry Pi. These servers will also be accessible
from another device on your local network if you use the IP address or hostname of your
Raspberry Pi. To make the servers directly accessible over the internet would require
configuration of your specific firewall and/or router, which we cannot practically cover
in this book. For prototyping ideas and creating demos, a simple alternative to
configuring firewalls and routers is to use a service such as Local Tunnels (https://localtun
nel.github.io/www) or Ngrok (https://ngrok.com), which will help you to make the Flask servers
on your Raspberry Pi accessible over the internet.

We will start by running and using our RESTful API to interact with the
LED before proceeding to review the server's source code.

Running and testing the Python server

https://localtunnel.github.io/www
https://ngrok.com/


You will find the code in the chapter03/flask_api_server.py file. Please review
this file before proceeding to get an overall idea about what it contains
before you proceed.

We are running our Flask examples using Flask's built-in HTTP server. This is more
than adequate for development purposes; however, it's not recommended for production
usage. Consult the Flask documentation section titled Deployment Options for
information on how to deploy a Flask application with production-quality web servers.
You'll find a link in the Further reading section to the official Flask website and
documentation.

To test the Python server perform the following steps:

1. Run our RESTful API server with the following command:

(venv) $ python flask_api_server.py

... truncated ...

NFO:werkzeug: * Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)

... truncated ...

The second to last line in the preceding code block indicates that our
server has started successfully. Our server is running in debug mode
by default, so its log output will be verbose and if you make any
changes to flask_api_server.py or other resource files, the server will
restart automatically.

If flask_api_server.py raises an error when started in debug mode, clear the file's execute
bit. This issue occurs on Unix-based systems and has to do with the development web
server shipped with Flask. Here is the command to clear the execute bit:
$ chmod -x flask_api_server.py

2. We will create a web page to interact without API shortly; however, for
now, browse to http://localhost:5000 in a web browser and verify that you
can use the slider on the web page to change the brightness of the LED.

Our example URL is http://localhost:5000, however, if you use your Raspberry Pi's IP
address instead of localhost, you will be able to access the web page from another device
on your local network.

The following screenshot is an example of the web page you will see:



Figure 3.1 – RESTful API client web page

3. We can also use the curl command-line tool to interact with the API. We
will do this now to observe the input and output JSON from our API
server requests.

Our first curl command in the following makes an HTTP GET
request and we see the LED's brightness level (a number between 0
and 100) printed on the Terminal in JSON (line 1). The default LED
brightness when the server is started is 50 (that is, 50% brightness):

$ curl -X GET http://localhost:5000/led

{

  "level": 50          # (1)

}  

The options for curl are as follows:

-X GET: The HTTP method used to make the request
<url>: The URL to request

4. This next command performs an HTTP POST request, and we are
setting the brightness level to its maximum of 100 (line 2), which is
returned as JSON and printed back to the Terminal (line 3):

$ curl -X POST -d '{"level": 100}' \    # (2) 

 -H "Content-Type: application/json" \

 http://localhost:5000/led

{

  "level": 100                            # (3)

}



The options for curl are as follows:

-X POST: This is the HTTP method; this time, we're making a POST
request.
-d <data>: This is the data we want to POST to the server. We're
posting a JSON string.
-H <HTTP headers>: These are the HTTP headers to send with
the request. Here, we're letting the server know that our data, (-d),
is JSON.
<url>: This is the URL to request.

An alternative to curl on the command line is Postman (getpostman.com). If you are not
familiar with Postman, it's a free API development, querying, and testing tool that is
invaluable when you are developing and testing RESTful API services.

Try altering the level value in the preceding curl POST example to a number
outside of the range 0-100 and observe the error message you receive. We
will see shortly how this validation logic is implemented with Flask-
RESTful.

Let's now proceed to look at our server source code.

Understanding the server code

In this section, we will walk through our RESTful API server's source code
and discuss the core parts to help you to understand how the server is coded
and operates. Please keep in mind that we're about to cover many code-level
artifacts that are specific to the Flask and Flask-RESTful frameworks, so
don't get worried if, at first, some concepts do not make immediate sense.

Once you have an understanding of the foundations and an overall idea of
how our sever works, you'll be in an excellent position to deepen your
understanding of Flask and Flask-RESTful by consulting their respective
websites (you will find links in the Further reading section). Furthermore,
you will have a solid reference RESTful API server that you can rework and
use as a starting point for your own future projects.

http://getpostman.com/


Please note that as we discuss the code, we will skip over any code and
concepts that we covered in earlier chapters, such as GPIOZero.

We will start by looking at the imports.

Imports

At the top of the source code file, we see the following imports:

import logging

from flask import Flask, request, render_template           # (1)

from flask_restful import Resource, Api, reqparse, inputs   # (2)

from gpiozero import PWMLED, Device                         # (3)

from gpiozero.pins.pigpio import PiGPIOFactory

The Flask-related imports we see on lines (1) and (2) are all of the classes
and functions of Flask and Flask-RESTful that we will require in our server.
You will notice on line (3), we're importing PWMLED not LED as we have done in
previous chapters. In this example, we're going to change the brightness of
our LED rather than just turning it on and off. We'll cover more about PWM
and  PWMLED as we proceed with this chapter.

Next, in our source code, we start to work with Flask and the Flask-RESTful
extension.

Flask and Flask-RESTful API instance variables

In the following, on line (4), we create an instance of our core Flask app and
assign it to the app variable. The parameter is the name of our Flask
application, and it's a common convention to use __name__ for the root Flask
app (we only have a root Flask app in our example). Anytime we need to
work with the core Flask framework, we will use the app variable:

app = Flask(__name__) # Core Flask app.            # (4)

api = Api(app) # Flask-RESTful extension wrapper   # (5)

On line (5), we wrap the core Flask app with the Flask-RESTful extension
and assign it to the api variable, and as we will see shortly, we use this
variable anytime we are working with the Flask-RESTful extension.
Following our app and api variables, we define additional global variables.



Global variables

The following global variables are used throughout our server. First, we have
the GPIO pin and an led variable, which will later be assigned a GPIOZero
PWMLED instance for controlling our LED: 

# Global variables

LED_GPIO_PIN = 21

led = None # PWMLED Instance. See init_led()

state = {                                     # (6)

    'level': 50 # % brightness of LED.

}

On line (6), we have a state dictionary structure that we will use to track the
brightness level of our LED. We could have used a simple variable instead
but have opted for a dictionary structure since it's a more versatile option
because it will be marshaled into JSON to send back to a client, as we will
see later on.

Next, we create and initialize our led instance.

The init_led() method

The init_led() method simply creates a GPIOZero PWMLED instance and assigns
it to the global led variable that we saw previously: 

def init_led():

    """Create and initialize an PWMLED Object"""

    global led

    led = PWMLED(LED_GPIO_PIN)

    led.value = state['level'] / 100        # (7)

We explicitly set the LED's brightness to match the value of our server's
brightness state on line (7) to ensure the server's managed state and the LED
are in sync when the server starts. We are dividing by 100 because led.value
expects a float value in the range of 0-1, while our API will be using an
integer in the range 0-100.

Next, we start to see the code that defines our server and its service
endpoints, starting with the code that serves the web page we visited earlier.



Serving a web page

Starting on line (8), we use the Flask  @app.route() decorator to define a
callback method that is invoked when the server receives an HTTP GET
request from a client to the root URL /, that is, a request to
http://localhost:5000:

# @app.route applies to the core Flask instance (app).

# Here we are serving a simple web page.

@app.route('/', methods=['GET'])                           # (8)

def index():

   """Make sure index_api_client.html is in the templates folder

   relative to this Python file."""

   return render_template('index_api_client.html',

                          pin=LED_GPIO_PIN)                # (9)

On line (9), render_template('index_api_client.html', pin=LED_GPIO_PIN) is a Flask
method use to return a templated page to the requesting client.
The pin=LED_GPIO_PIN parameter is an example of how to pass a variable from
Python to the HTML page template for rendering. We will cover the contents
of this HTML file later in this chapter.

Notice, in the preceding code block on line (8), we have @app.route(...). The presence of
the app variable means we are using and configuring the core Flask framework here.

Returning an HTML page to the client is the only core Flask feature that we
will cover in this book, however, there will be additional resources listed in
the Further reading section for you to explore the core concepts of Flask
further.

Our next stop in code is the LEDController class. It's here that we are
interacting with the LED and GPIOZero.

The LEDControl class

In Flask-RESTful, API resources are modeled as Python classes that extend
the Resource class, and on line (10) in the following snippet, we see the
LEDControl(Resource) class defined that will contain the logic used to control
our LED. Later on, we will see how we register this class with Flask-
RESTful so that it responds to client requests:



class LEDControl(Resource):                                    # (10)

    def __init__(self):

        self.args_parser = reqparse.RequestParser()            # (11)

        self.args_parser.add_argument(

            name='level',                  # Name of arguement

            required=True,                 # Mandatory arguement

            type=inputs.int_range(0, 100), # Allowed 0..100    # (12) 

            help='Set LED brightness level {error_msg}',

            default=None)

On line (11), we create an instance of RequestParser() and assign it to the
args_parser variable before configuring the parser with add_argument(). We use
an instance of RequestParser() in Flask-RESTful to define validation rules for
the arguments we expect our LEDControl resource to handle.

Here, we are defining a mandatory parameter named level, which must be an
integer in the range 0 to 100, as shown on line (12). We've also provided a
custom help message for when the level parameter is missing or out of range.

We will see the use of args_parser when we cover the post() method shortly,
but first, let's discuss the get() method.

The get() class method

The get() class method handles HTTP GET requests for
our LEDControl resource. It's what handled our URL request when we tested
the API previously with the following command:

$ curl -X GET http://localhost:5000/led

get() simply returns, on line (13), the global state variable:

    def get(self):

        """ Handles HTTP GET requests to return current LED state."""

        return state         # (13)

Flask-RESTful returns JSON responses to clients, and that's why we return
the state variable. In Python, state is a dictionary structure that can be
mapped directly into a JSON format. We saw the following JSON example
previously when we make a GET request using curl:

{ "level": 50 }



This class-as-a-resource (for example, LEDControl) and method-to-HTTP-
method mapping (for example, LEDControl.get()) is an example of how the
Flask-RESTful extension makes RESTful API development easy.

There are also method names reserved for other HTTP request methods,
including POST, which we cover next.

The post() class method

The post() class method handles HTTP POST requests made to the LEDControl
resource. It is this post() method that received and processed our curl POST
request when we made the following request earlier when we tested our
server:

curl -X POST -d '{"level": 100}' \

     -H "Content-Type: application/json" \

     http://localhost:5000/led

post() is more complex than our get() method. It is here where we change the
brightness of our LED in response to a requesting client's input:

    def post(self):

        """Handles HTTP POST requests to set LED brightness level."""

        global state                                            # (14)

        args = self.args_parser.parse_args()                    # (15)

        # Set PWM duty cycle to adjust brightness level.

        state['level'] = args.level                             # (16)

        led.value = state['level'] / 100                        # (17)

        logger.info("LED brightness level is " + str(state['level']))

        return state                                            # (18)

On line (14), we use the Python global keyword to indicate that we will be
altering the state global variable.

On line (15), we see the use of args_parser that we discussed previously. It's
this call to args_parser.parse_args() that will parse and validate the caller's
input (remember level was a required argument and it must be in the range 0-
100). If our predefined validation rules fail, the user will be issued with an
error message, and post() will terminate here.



If the arguments are valid, their values are stored in the args variable, and the
code continues to line (16) where we update the global state variable with
the newly requested brightness level. On line (17), we alter the physical
LED's brightness using the GPIOZero PWMLED instance, led, which
expects a value between 0.0 (off) and 1.0 (full brightness), so we're mapping
our level input range of 0-100 back to 0-1. The value of state is returned to
the client on line (18).

Our final task is to register LEDController with Flask-RESTful and start the
server.

LEDController registration and starting the server

After calling the init_led() method to initiate and default out GPIOZero led
instance, we then see how to register our LEDControl resource with
api.add_resource() on line (19).  Here, we are mapping the URL endpoint, /led,
with our controller.

Notice, in the code block on line (19), we have api.add_resource(...). The presence of the
api variable means we are using and configuring the Flask-RESTful extension here.

Finally, on line (20), our server is started (in debug mode) and is ready to
receive client requests. Notice that we use the core Flask instance in
the app variable to start the server:

# Initialize Module.

init_led()

api.add_resource(LEDControl, '/led')          # (19)

if __name__ == '__main__':

    app.run(host="0.0.0.0", debug=True)       # (20)

Well done! We've just covered the build of a simple, yet, functional RESTful
API server in Python. You'll find links in the Further reading section to the
official Flask-RESTful documentation so you can take your knowledge
further.

As mentioned, we've used PWMLED in our server. Let's briefly introduce the
term PWM before we proceed and review the web page that accompanies
our RESTful API server.



Introduction to PWM

In the proceeding example, we used PWMLED, not LED, from GPIOZero.
PWMLED allows us to control the brightness of the LED using a technique
known as Pulse Width Modulation, commonly abbreviated as PWM.

PWM is a technique used to create a lower the average voltage from a source
signal, which can be a 3.3-volt GPIO pin. We will be covering PWM and
GPIO pin voltages in detail in Chapter 6, Electronics 101 for the Software
Engineer.

For our current example, briefly (and somewhat oversimplified), PWM
pulses the LED on and off really, really fast, and our eyes observe different
pulse durations (that are creating different voltages) manifesting as different
brightness levels of the LED. We changed this pulse duration (known as the
duty-cycle) using the value property of a PWMLED instance, that is, led.value =
state["level"] in LEDControl.post(). In Chapter 5, Connecting Your Raspberry Pi
to the Physical World, we will explore PWM in greater detail.

We've now covered our Python-based Flask-RESTful API server and learned
how to implement a simple and functional RESTful API server that is
capable of handling both GET and POST requests, the two most popular
ways of interacting with RESTful API servers. Plus, we also saw how to
achieve data validation with Flask-RESTful as a simple and effective way to
guard our server against invalid input data. 

We also learned to use the curl command-line tool to interact with and test
our server. As you build, test, and debug RESTful API servers, you will
find curl a useful addition to your development toolkit.

Next, we will take a look at the code behind the web page that interacts with
our API.



Adding a RESTful API client web
page
The web page we are about to discuss is the one you interacted with
previously to change the brightness of your LED when you
visited http://localhost:5000 in your web browser. A screenshot of the web
page is shown in Figure 3.1.

As we proceed through this section, we will be learning how to build this
basic web page using HTML and JavaScript. We will discover how to make
the HTML range component interact with the Flask-RESTful API server that
we created in the previous section, so that when we change the range control
(that is, slide the slider), our LED's brightness also changes.

You will find the page's code in
the chapter03/templates/index_api_client.html file. Please review this file before
proceeding to get an overall idea about what it contains.

The templates folder is a special Flask folder where template files are kept.
An HTML page is considered a template in the Flask ecosystem. You will
also find a folder named static. This folder is where static files are stored.
For our example, this is where a copy of the jQuery JavaScript library file is
found.

All files and resources referenced in a web page served from Flask are relative to the
server's root folder. For us, this is the chapter03 folder.

Let's walk through the web page code.

Understanding the client-side code

This section's code is JavaScript, and we will be using the jQuery JavaScript
library. An understanding of basic JavaScript and jQuery will be essential to
understanding the code examples that follow. If you are not familiar with
jQuery, you can find learning resources at jQuery.com.



JavaScript imports

We see in the following, on line (1), that we import the jQuery library that is
contained in the static folder:

<!-- chapter03/templates/index_api_client.html -->

<!DOCTYPE html>

<html>

<head>

    <title>Flask Restful API Example</title>

    <script src="/static/jquery.min.js"></script>    <!--(1)-->

    <script type="text/javascript">

Next, we will start to cover the JavaScript functions in the file.

The getState() function

The primary purpose of getState() is to retrieve the LED's current state from
the server. It uses the JQuery get() method to make an HTTP GET request to
our API server's /led resource. We saw, in the previous section, that the URL
path, /led, is mapped to the LEDControl Python class, and because we're making
a GET request, it's LEDControl.get() that will receive and handle our request:

// GET request to server to retrieve LED state.

function getState() {                           

    $.get("/led", function(serverResponse, status) { // (2)

       console.log(serverResponse)                   

       updateControls(serverResponse)                // (3)

    });

}

The server's response is contained in the serverResponse parameter on line (2),
which is passed to the updateControls() function on line (3) to update the web
page controls. We'll cover this method shortly.

While getState() gets data from our Python server, our next
method, postUpdate(), sends (that is, posts) data to the server.

The postUpdate() function

postUpdate() changes the LED's brightness by performing an HTTP POST to
the server. This time, it's the LEDControl.post() method in our API server that



handled the request:

// POST Request to server to set LED state.

function postUpdate(payload) {                          // (4)

    $.post("/led", payload, function(serverResponse, status) {

        console.log(serverResponse)

        updateControls(serverResponse);                 // (5)

    });

}

On line (4), it receives and parses (remember arg_parser from LEDControl) the
data in the payload parameter. payload is a JavaScript object with a state child
property. We'll see this object constructed later in the web page slider's
change event handler.

For consistency, we also update the controls on line (5) even though, in our
case, the serverResponse variable will contain the same level value as
the payload parameter.

Next, we will see what the call to updateControls() on line (5) does.

The updateControls() function

updateControls() changes the visual appearance of the web page controls. This
function receives JSON input as the data parameter, which is in the
form: {"level":50}. Starting on line (6) and using jQuery selectors, we update
the slider control and text on the web page to reflect the new level value:

function updateControls(data) {

    $("input[type=range].brightnessLevel").val(data.level);  // (6)

    $("#brightnessLevel").html(data.level);

}

Next, we'll see how we use JQuery to create an event handler that responds
when we or another user changes to the web page's slider component.

Registering event handlers with jQuery

We are following jQuery best practice and using the jQuery document ready
function (that is, $(document).ready(...)) to register the event handlers for our
web page's slider control and initialize our web page elements:



    $(document).ready(function() {

        // Event listener for Slider value changes.

        $("input[type=range].brightnessLevel")

            .on('input', function() {                    // (7)

               brightness_level = $(this).val();         // (8)

               payload = { "level": brightness_level }   // (9)

               postUpdate(payload);

            });

        // Initialize slider value form state on server.

        getState()                                       // (10)

    });

    </script>

</head>

On line (7), we register an event handler for the slider controls input event.
This handler function will be called when a user interacts with the slider on
the web page.

Starting on line (8), after a user moves the slider, we extract the slider's new
value of the slider using val() (which will be between 0 and 100—we'll see
why shortly when we review the page's HTML).

On line (9), we create a JSON object containing our new brightness level
before passing it to postUpdate(), which calls our RESTful API to change the
brightness of our physical LED.

Finally, on line (10), we call our getState() function, which makes an HTTP
request to our server to get the current brightness level for the LED. As we
saw previously, getState() then delegates to updateControls(), which then
updates the slider and page text to reflect the LED's brightness value.

We'll conclude this section by looking at the HTML that makes up the web
page.

The web page HTML

Previously in our Python server, we had the
line render_template('index_rest_api.html', pin=LED_GPIO_PIN). It's the pin parameter
in this method call that is rendered on our web page on line (11), represented
by the template variable, {{pin}}:

<body>

    <h1>Flask RESTful API Example</h1>



    LED is connected to GPIO {{pin}}<br>               <!--(11)-->

    Brightness: <span id="brightnessLevel"></span>%<br>

    <input type="range" min="0" max="100"              <!--(12)-->

           value="0" class="brightnessLevel">

</body>

</html>

Finally, we see, on line (12), our HTML slider component is restricted to the
range of 0-100. As we saw previously, it's the call to getState() in the
document ready handler that updates the slider's value attribute to match the
brightness level stored on the server after the web page has finished loading.

Congratulations! We've reached a milestone now, having completed a full
end-to-end server and client example based on RESTful APIs. Our learning
about Flask and Flask-RESTful means we have learned to use one of the
most popular and feature-rich Python libraries for building web services.
Plus, learning to build a RESTful API server and matching client means we
have practically implemented the most common approach used today for
client-server communication.

We have barely scratched the surface of what can be achieved with Flask,
Flask-RESTful, and RESTful APIs in general, and there is much more that
can be explored. You'll find links in the Further reading section if you wish
to take your understanding of these topics further.

Next, we will create the same client and server scenario we built in this
section, only this time using Web Sockets as our transport layer.

Creating a Web Socket service with
Flask-SocketIO
We will now implement our second Python-based server. Our overall
outcome in this section will be similar to our RESTful API server and client
that we created in the previous section—that is, we will be able to control
our LED from a web browser. Our objective this time around, however, will
be to create our program using a different technological approach using Web
Sockets as our transport layer. 



Web Sockets are a full-duplex communication protocol and are a common
technology choice where real-time client/server interaction is required. Web
Sockets are a technology that—in my opinion and experience—is best
learned through doing rather than reading, especially if you are new to server
development. A deep discussion of Web Sockets is beyond the scope of this
chapter; however, you'll find two links in the Further reading section
covering the basics.

If you are new to Web Sockets, I highly recommend reading those two
resources as a primer before proceeding. And don't worry if the content does
not sink in initially because I'm confident that, once you have used and
understood how our Python Web Socket server and the accompanying Web
Socket-enabled web page is implemented, the pieces of the larger Web
Socket puzzle will start to come together.

For our Web Socket sever build, we will use the Flask-SocketIO library,
which is modeled after and compatible with the popular Socket.IO library
for JavaScript (https://socket.io). 

We will start by running and using our Web Socket server to interact with
the LED before proceeding to review the server's source code.

Running and testing the Python server

Let's start by having a quick look at our Python Web Socket server code and
running the server to see it in operation. This will give us a broad idea of the
code and a first-hand demonstration of how the code works before we
discuss it in detail.

You will find the Web Socket server's code in
the chapter03/flask_ws_server.py file. Please review this file before proceeding.

When you have looked through the code, we will run our server. Here are the
steps to follow:

1. Run the Web Socket server with the following command:

https://socket.io/


(venv) $ python flask_ws_server.py

... truncated ...

NFO:werkzeug: * Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)

... truncated ...

The preceding output is similar to what we saw when we ran the
RESTful API server; however, you can expect more output messages
on your Terminal for this server. The additional output you will see
has been truncated from the preceding example.

If flask_ws_server.py raises an error when started in debug mode, clear the file's execute
bit. This issue occurs on Unix-based systems and has to do with the development web
server shipped with Flask. Here the is command to clear the execute bit:
$ chmod -x flask_ws_server.py

2. Visit the http://localhost:5000 URL in a web browser. You will get a web
page with a slider as shown in Figure 3.2. While the visual appearance
of the web page is similar to the RESTful API server's web page, the
underlying JavaScipt is different:

Figure 3.2 – Web Socket client web page

Verify that you can use the slider on the web page to change the
brightness of the LED.

Open a second web browser and visit http://localhost:5000 (so now you have two pages
open). Change the slider, and you will see that both pages stay in sync and in real time!
And presto, you have discovered a unique advantage offered by Web Sockets compared
to a RESTful API.



3. Find on the web page, the line Connected to server: Yes, then perform
the following:

Terminate the server by pressing Ctrl + C in the Terminal, and you
will notice the line changes to Connected to server: No.
Restart the server again and it changes back to Connected to
server: Yes.

This illustrates the bi-directional nature of Web Sockets. We'll see how this
is implemented on the web page when we review it's JavaScript but first, we
will review the Python code that makes up our Web Socket server. 

Server code walkthrough

In this section, we will walk through our Python server's source code and
discuss the core parts. Again, we'll skip over any code and concepts that we
covered in earlier chapters. First, let's see what we're importing.

Imports

Near the top of the source file, we have the following imports:

from flask import Flask, request, render_template

from flask_socketio import SocketIO, send, emit            # (1)

The main difference concerning our preceding imports compared to the
RESTful API imports are on line (1), where we now import classes and
functions from Flask-SocketIO.

Next, in our source code, we start to work with Flask and the Flask-
SocketIO extension.

Flask and Flask-RESTful API instance variables

On line (2), we create an instance of SocketIO and the Flask-SocketIO
extension and assign it to the socketio variable. It's this variable that we will
use throughout our server to access and configure our Web Socket service: 



# Flask & Flask Restful Global Variables.

app = Flask(__name__) # Core Flask app.

socketio = SocketIO(app) # Flask-SocketIO extension wrapper  # (2)

Following the creation of our SocketIO instance, we once again will server a
web page from the default URL endpoint, /.

Serving a web page

Similarly to the RESTful API example, we configure the core Flask
framework to serve a web page from the root URL using the @app.route()
decorator:

@app.route('/', methods=['GET'])

def index():

    """Make sure index_web_sockets.html is in the templates folder

    relative to this Python file."""

    return render_template('index_web_sockets.html',         # (3)

                           pin=LED_GPIO_PIN)          

For our Web Socket server, this time, we are serving the HTML
file, index_web_sockets.html, which we will be covering shortly in the next
section, Adding a Web Socket client web page.

Next, we start to see the code that sets up and handles Web Socket event
messages.

Connecting and disconnecting handlers

From this point in code forward, we start to see the major differences
between the RESTful API server and this Web Socket server:

# Flask-SocketIO Callback Handlers

@socketio.on('connect')                                     # (4)

def handle_connect():

    logger.info("Client {} connected.".format(request.sid)) # (5)

    # Send initializating data to newly connected client.

    emit("led", state)                                      # (6)

We see, on line (4), how to register a message or event handler using the
Python decorator notation. The parameter to each @socketio.on(<event_name>) is
the name of an event our server will listen for. The connect and



disconnect events (in the following) are two reserved events. These handlers
are called whenever a client connects to or disconnects from the server.

You will notice, on line (5), we are logging whenever a client connects,
along with a unique identifier for the client accessed via request.sid. Each
client session with the server receives a unique SID. When you
visit http://localhost:5000, you will see this connected message logged by the
server. If you open two or more web browsers (or tabs) to this URL, you will
notice that each session receives a unique SID.

On line (6), we emit the current LED state back to the connecting client so it
can initialize itself as required:

@socketio.on('disconnect')                               # (7) 

def handle_disconnect():

    """Called with a client disconnects from this server"""

    logger.info("Client {} disconnected.".format(request.sid))

Our disconnect handler on line (7)  is simply logging the fact that a client
disconnects. As you browse away from http://localhost:5000, you will notice
the server logging this message, along with the disconnecting client's sid.

Next, we come across the event handler that controls our LED.

LED handler

On line (8) in the following, we have another message handler—this time
using a custom event named led. Also notice on line (9) that this event
handler has a data parameter, whereas the connect and disconnect handlers in
the preceding section had no parameters. The data parameter contains data
sent from the client, and we see, on line (10), the level child property of data.
All data form clients are strings, so here we validate the data and cast it to an
integer on the following line. There is no equivalent built-in argument
validating and parsing utility with Flask-SocketIO, so we must perform
validation checks manually, as shown starting on line (11):

@socketio.on('led')                                 # (8)

def handle_state(data):                             # (9)

    """Handle 'led' messages to control the LED."""

    global state

    logger.info("Update LED from client {}: {} "



                .format(request.sid, data))         

    if 'level' in data and data['level'].isdigit(): # (10)

        new_level = int(data['level'])

        # Range validation and bounding.            # (11)

        if new_level < 0:

            new_level = 0

        elif new_level > 100:

            new_level = 100

In the following code block, on line (12), we set the LED's brightness. On
line (13), we see the server-side use of the emit() method. This method call
emits a message to one or more clients. The "led" parameter is the name of
the event that will be consumed by a client. We've called both the client-side
and server-side events related to LED control the same name, led. The state
parameter is the data to pass to the client. Similar to the RESTful API server,
it's a Python dictionary object.

The broadcast=True parameter means that this led message will be emitted to
all connected clients, not just the client that originated the led message on
the server. The broadcasting of this event is why, when you opened multiple
web pages and changed the slider on one, the others also stayed in sync:

        led.value = new_level / 100               # (12)

        logger.info("LED brightness level is " + str(new_level))

        state['level'] = new_level

    # Broadcast new state to *every* 

    # connected connected (so they remain in sync)

    emit("led", state, broadcast=True)            # (13)

Our final task is to cover how to start our Web Socket server.

Starting the server

Finally, we start the server on line (14). This time, we are using the Flask-
SocketIO instance, socketio, rather than the core Flask app instance, as we did
for the RESTful API server:

if __name__ == '__main__':

    socketio.run(app, host="0.0.0.0", debug=True)  # (14)

Well done! That's our Web Socket server complete.



We have now seen how we can build a Web Socket server using Python
together with Flask-SocketIO. While the overall outcome of our Web Socket
server implementation controls our LED similarly to our RESTful API
server, what we have learned is a different approach to achieving the same
end result. However, in addition to this, we demonstrated a feature provided
by a Web Socket approach, which is how we can keep multiple web pages in
sync!

You will find links in the Further reading section to the Flask-SocketIO documentation
so you can further your knowledge even more.

Now that we have seen the Python server implementation of a Web Socket
server, we'll next turn our attention to the Web Socket version of the web
page.

Adding a Web Socket client web
page
In this section, we will review the HTML web page we used to control our
LED from our Web Socket server. An example of this page as seen in Figure
3.2.

We will learn how to use the Socket.IO JavaScript library with our web page
so we can send and receive messages (when we work in a Web Socket
environment, we tend to refer to data as messages) to and from our Python
Flask-SocketIO Web Socket server. Plus, as we explore the JavaScript and
Socket.IO-related code, we'll discover how our client-side JavaScript code
relates to our Python server-side code.

You will find the following web page's code in
the chapter03/templates/index_ws_client.html file. Please review the contents of
this file to get a broad overview of what it contains.

When you have reviewed our HTML file, we will continue and discuss the
important parts of this file.



Understanding the client-side code

Now that you had a look through
the chapter03/templates/index_ws_client.html file, it's time to discuss how this file
is constructed and what it does. We will start our code walk-through with the
additional JavaScript import we need for Web Socket support.

Imports

Our Web Socket client requires the Socket.IO JavaScript library, and we see
this imported on line (1). You will find a link to the Socket.IO JavaScript
library in the Further reading section if you want to learn more about this
library and how it works:

<!-- chapter03/templates/index_ws_client.html -->

<!DOCTYPE html>

<html>

<head>

    <title>Flask Web Socket Example</title>

    <script src="/static/jquery.min.js"></script>

    <script src="/static/socket.io.js"></script>   <!-- (1) -->

    <script type="text/javascript">

Following the imports, we will see next the JavaScript that integrates with
our Python Web Socket server.

Socket.IO connect and disconnect handlers

In the <script> section of the file, on line (2), we create an instance of
the io() class from the socket.io JavaScript library and assign it to
the socket variable:

    var socket = io();                         // (2)

    socket.on('connect', function() {          // (3)

        console.log("Connected to Server");

        $("#connected").html("Yes");

    });

    socket.on('disconnect', function() {       // (4)

        console.log("Disconnected from the Server");

        $("#connected").html("No");

    });



On line (3), with socket.on('connect', ...), we register a connect event listener.
This handler is called every time our web page client connects successfully
to our Python server. This is the client-side equivalent of the Python server's
on connect handler we defined with @socketio.on('connect').

On line (4), we see the disconnect handler that is called every time the client
web page loses its connection to the server. This is the client-side equivalent
of the Python server-side @socketio.on('disconnect') handler.

Notice, in both handlers, we update our web page to indicate whether it has a
connection back to the server. We saw this in operation previously when we
terminated and restarted the server.

Next, we have a handler related to our LED.

The on LED handler

On line (5), we have our led message handler, which is responsible for
updating the HTML controls with the current brightness level of our LED:

socket.on('led', function(dataFromServer) {         // (5)

    console.log(dataFromServer)

    if (dataFromServer.level !== undefined) {

        $("input[type=range].brightnessLevel").val(dataFromServer.level);

         $("#brightnessLevel").html(dataFromServer.level);

     }

});

If you review the Python server's @socketio.on('connect') handler, you will
notice it contains the line emit("led", state). When a new client connects to
the server, it emits back to the connecting client a message containing the
current state of our LED. It's the JavaScript socket.on('led', ...) part on line
(5) that consumes this message.

Next, we have the jQuery document ready callback.

The document ready function

The jQuery document ready callback is where we set up the event handler
for the HTML slider:



        $(document).ready(function(){

            // Event listener for Slider value changes.

            $("input[type=range].brightnessLevel")

              .on('input', function(){

                  level = $(this).val();

                  payload = {"level": level};

                  socket.emit('led', payload);         // (6)

            });

        });

    </script>

</head>

On line (6), we see how to emit a message in JavaScript. The call
to socket.emit('led', payload) emits a message to the Python server with the
brightness level we want to apply to our LED.

It's the Python @socketio.on('led') handler that receives this message and
changes the LED's brightness.

If you review this Python handler, you will notice the line: emit("led", state,
broadcast=True). This line broadcasts a message with the new LED state to all
connected clients. Each client's socket.on('led', ...) handler will consume this
message and synchronize their sliders accordingly.

Finally, we have the HTML that makes up our web page.

The web page HTML

The only difference to the RESTful API web page is the inclusion on line (7)
of a message to indicate whether we have a connection to the Python server:

<body>

  <h1>Flask Web Socket Example</h1>

  LED is connected to GPIO {{pin}}<br>

  Connected to server: <span id="connected">No</span> <!-- (7) -->

  <br><br>

  Brightness <span id="brightnessLevel"></span>:<br>

  <input type="range" min="0" max="100" 

         value="0" class="brightnessLevel">

</body>

</html>

Congratulations! That's two Python servers and web page clients using two
different transport layers you have just completed.



We have seen how to implement the same project to control an LED's
brightness using both a RESTful API-based approach and a Web Sockets-
based approach. These are two very common options for implementing web
services and integrating a web page (or any client for that matter) to a
backend server, so an understanding and appreciation of both techniques are
useful so you can choose the most suitable technique for your own
applications or for those times when you are trying to understand how an
existing application is implemented.

Let's recap what we have covered by comparing the approaches and learning
a little more about which problem domains each approach is best suited for.

Comparing the RESTful API and
Web Socket servers
A RESTful-based API is conceptually similar to design, develop, and test,
and are more commonly found across the internet where a one-way
request/response data exchange is needed.

Here are some defining characteristics of this approach:

The communication protocol is built around HTTP methods with GET,
POST, PUT, and DELETE being the most common.
The protocol is half-duplex in the form of request-response. The client
makes a request and the server responds. The server cannot initiate a
request to a client.
We have options including curl on the command line and GUI tools
such as Postman to test and development RESTful APIs.
We can use a common web browser to test HTTP GET API endpoints
In Python, we can use the Flask-RESTful extension to help us to build a
RESTful API server. We model endpoints as Python classes that have
class methods such as .get() and .post() that match HTTP request
methods.
For a web page client, we can use a library such as jQuery to make
HTTP requests to our Python server.



Web Sockets, on the other hand, are often found in chat applications and
games where real-time two-way data exchange is needed, often with many
simultaneous clients. 

Here are some defining characteristics of this approach:

The communication protocol is based on publishing and subscribing to
messages.
The protocol is full-duplex. Both the client and the server can initiate
requests to one another.
In Python, we can use the Flask-SocketIO extension to help us to create
Web Socket services. We create methods and designate them as a
callback handler for a message event.
For a web page client, we use the socket.io JavaScript library. Similar to
Python, we create common JavaScript functions and register them with
socket.io as callback handlers for message events. 

Is one approach better than the other? There is no single best or one-size-
fits-all approach, so choosing a networking approach for your IoT
applications is largely going to depend on what you are creating and how
clients are going to connect to and use your application. If you are new to
building networked applications and web services in general, RESTful APIs
with Flask-RESTful is a great place to start while you learn the concepts and
experiment. This is a very common and widely used approach, plus if you
use a tool such as Postman (getpostman.com) as your API client while
developing, then you'll have a powerful and fast way to play with and test
the APIs that you create.

Summary
In this chapter, we have covered in two common methods for building
networked services with Python—RESTful APIs and Web Socket services.
We built these services in Python using the Flask microservices framework
and the Flask-RESTful and Flask-SocketIO extensions. After we created
each server, we also created web page clients. We learned how to use the

http://getpostman.com/


JavaScript jQuery library to make a RESTful API request and the Socket.IO
JavaScript library to perform Web Socket messaging and subscribing.

With this new knowledge, you now have the foundations and a simple end-
to-end client-server framework built using Python, HTML, JavaScript, and
jQuery that you can expand on and experiment with to create grander IoT
applications. For example, as you proceed through Part 3 of this book, IoT
Playground, and learn about different electronic sensors and actuators, you'll
be in a position to expand and build upon this chapter's examples using
different electronic components. We'll also see another example of Flask-
RESTful and RESTful APIs when we reach Chapter 14, Tying It All
Together – An IoT Christmas Tree, where we introduce a web page that
interacts with a LED lighting strip and servo.

In Chapter 4, Networking with MQTT, Python, and the Mosquitto MQTT
Broker, we will look at a more advanced and very versatile approach to
building the networking layer of IoT applications, this time with MQTT, the
Message Queue Telemetry Transport protocol. 

Questions
As we conclude, here is a list of questions for you to test your knowledge
regarding this chapter's material. You will find the answers in the
Assessments section of the book:

1. What feature of the Flask-RESTful extension can we use to help to
validate a client's input data?

2. What communication protocol can be used to provide real-time full-
duplex communication between a client and a server?

3. How do we perform request data validation with Flask-SocketIO?
4. What is the Flask templates folder?
5. When using jQuery, where should we create component event listeners

and initialize our web page content?
6. What command-line tool can be used to make requests to a RESTful

API service?



7. What happens to the physical LED when we change the value property
of a PWMLED instance?

Further reading
We have mentioned the word "RESTful" a lot in this chapter, without any
deep discussion of what it means exactly. If you want all of the details, a
great introductory tutorial can be found on SitePoint.com:

REST on SitePoint.com: https://www.sitepoint.com/developers-rest-api

Our RESTful API example barely even touches the basics of Flask and
Flask-RESTful but provides a working example that you can build upon. I
encourage you to read at a minimum the Flask Quick Start Guide, followed
by the Flask RESTful Quick Start Guide to get a good grounding and
understanding of these two frameworks:

Flask Quick Start: https://flask.palletsprojects.com/en/1.1.x/quickstart
Flask-RESTful Quick Start: https://flask-restful.readthedocs.io/en/latest/q
uickstart.html

As mentioned during the chapter in the section titled Introducing the Flask
microservices framework, if you experience difficulties with Flask-RESTful
and cannot find answers in its documentation, you should also consult the
official core Flask documentation:

Flask documentation: https://flask.palletsprojects.com

We have also only scratched the surface of Web Sockets with Flask-
SocketIO and Socket.IO. The following links point to the official Flask-
SocketIO and Socket.IO libraries. I've also included two additional links that
provide a generalized and simple introduction to Web Sockets. As a
reminder, Web Sockets are a technology that is best learned through doing
rather than reading, especially if you are new to server development. So, as
you read introductory material on Web Sockets, expect core underlying
concepts to be illustrated with a wide range of different code examples and

https://www.sitepoint.com/developers-rest-api
https://flask.palletsprojects.com/en/1.1.x/quickstart/
https://flask-restful.readthedocs.io/en/latest/quickstart.html
https://flask.palletsprojects.com/


libraries in addition to the Flask-SocketIO and Socket.IO libraries we used in
this chapter:

Flask-SocketIO: https://flask-socketio.readthedocs.io
Socket.IO (JavaScript library): https://socket.io
Web Socket basics: https://www.html5rocks.com/en/tutorials/websockets/basics
Web Socket basics: https://medium.com/@dominik.t/what-are-web-sockets-what-ab
out-rest-apis-b9c15fd72aac

https://flask-socketio.readthedocs.io/
https://socket.io/
https://www.html5rocks.com/en/tutorials/websockets/basics
https://medium.com/@dominik.t/what-are-web-sockets-what-about-rest-apis-b9c15fd72aac


Networking with MQTT, Python, and
the Mosquitto MQTT Broker

In the previous chapter, we created two Python servers and accompanying web
pages using both a RESTful API and Web Socket approach to networking. In
this chapter, we will cover another networking topology that is common in the
IoT world, known as MQTT or Message Queue Telemetry Transport.

We will commence by setting up your development environment and installing
the Mosquitto MQTT broker service on your Raspberry Pi. Then, we will learn
about MQTT features using command-line tools that come with Mosquitto to
help you to understand the core concepts in isolation. After that, we'll proceed to
a Python IoT application that uses MQTT for its messaging layer—and yes, it'll
be all about controlling the LED!

We will cover the following topics in this chapter:

Installing the Mosquitto MQTT broker
Learning MQTT by example
Introducing the Python Paho-MQTT client library
Controlling an LED with Python and MQTT
Building a web-based MQTT client

Technical requirements
To perform the exercises in this chapter, you will need the following:

Raspberry Pi 4 Model B
Raspbian OS Buster (with desktop and recommended software)
A minimum of Python version 3.5

These requirements are what the code examples in this book are based on. It's
reasonable to expect that the code examples should work without
modification on a Raspberry Pi 3 Model B or a different version of Raspbian OS
as long as your Python version is 3.5 or higher.



You will find this chapter's source code in the chapter04 folder in the GitHub
repository available at the following URL: https://github.com/PacktPublishing/Practic
al-Python-Programming-for-IoT

You will need to execute the following commands in a Terminal to set up a
virtual environment and install the Python libraries required for the code in this
chapter:

$ cd chapter04              # Change into this chapter's folder

$ python3 -m venv venv      # Create Python Virtual Environment

$ source venv/bin/activate  # Activate Python Virtual Environment

(venv) $ pip install pip --upgrade        # Upgrade pip

(venv) $ pip install -r requirements.txt  # Install dependent packages

The following dependencies are installed from requirements.txt:

GPIOZero: The GPIOZero GPIO library (https://pypi.org/project/gpiozero)
PiGPIO: The PiGPIO GPIO library (https://pypi.org/project/pigpio)
Paho-MQTT Client: The Paho-MQTT client library (https://pypi.org/projec
t/paho-mqtt)

We will be working with the breadboard circuit we created in Chapter 2, Getting
Started with Python and IoT, Figure 2.7.

Installing the Mosquitto MQTT
broker
MQTT, or Message Queue Telemetry Transport, is a lightweight and simple
messaging protocol targeted specifically for IoT applications. While a Raspberry
Pi is powerful enough to leverage more complex messaging protocols, if you are
using it as part of a distributed IoT solution, chances are you are going to
encounter MQTT; hence, learning it is very important. Besides, its simplicity and
open nature make it easy to learn and use.

Our introduction to MQTT is going to be performed using a popular open source
MQTT broker called Mosquitto that we will install on your Raspberry Pi.

The examples we cover in this chapter were performed with the Mosquitto broker and client
version 1.5.7, which are MQTT protocol version 3.1.1-complaint. A different version of the

https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://pypi.org/project/gpiozero
https://pypi.org/project/pigpio
https://pypi.org/project/paho-mqtt


broker or client tools will be suitable as long as they are MQTT protocol version 3.1.x-
compatible.

To install the Mosquitto MQTT broker service and client tools, follow these
steps:

1. Open a new Terminal window and execute the following apt-get command.
This must be performed using sudo:

$ sudo apt-get --yes install mosquitto mosquitto-clients

... truncated ...

2. To ensure that the Mosquitto MQTT broker service has started, run the
following command in the Terminal:

$ sudo systemctl start mosquitto

3. Check that the Mosquitto service has started with the following service
command. We expect to see the active (running) text printed to the Terminal:

$ systemctl status mosquitto

... truncated ...

 Active: active (running)

... truncated ...

4. We can check the Mosquitto and MQTT protocol version with the mosquitto
-h command. Here, we see that the Mosquitto broker is using MQTT
version 3.1.1:

$ mosquitto -h

mosquitto version 1.5.7

mosquitto is an MQTT v3.1.1 broker.

... truncated ...

5. Next, we will configure Mosquitto so that it can serve web pages and
handle Web Socket requests. We will use these features when we come to
build a web page client later in this chapter.

In the chapter4 folder, there is a file named mosquitto_pyiot.conf, which is
partially replicated here. There is one line in this file that we need to
check:

# File: chapter04/mosquitto_pyiot.conf

... truncated...

http_dir /home/pi/pyiot/chapter04/mosquitto_www



For the exercises in this chapter, you need to update the http_dir setting on
the last line so it's the absolute path to the chapter04/mosquitto_www folder on
your Raspberry Pi. If you used the suggested folder, /home/pi/pyiot, when
cloning the GitHub repository in Chapter 1, Setting Up Your Development
Environment, then the path listed previously is correct.

6. Next, we copy the configuration in mosquitto_pyiot.conf using the following cp
command into the appropriate folder so that it can be loaded by Mosquitto:

$ sudo cp mosquitto_pyiot.conf /etc/mosquitto/conf.d/

7. Now we restart the Mosquitto service to load our configuration:

$ sudo systemctl restart mosquitto

8. To check that the configuration has worked, visit the
http://localhost:8083 URL in a web browser on your Raspberry Pi, and you
should see a page similar to the following screenshot:

Figure 4.1 – Web page served by the Mosquitto MQTT broker

This is a giveaway to what we'll be doing later in this chapter! At the moment,
while you can move the slider, it will not change the LED's brightness because
we do not have the Python-side code running. We'll cover that in due course later
in this chapter.

If you experience problems getting the Mosquitto MQTT Broker to start, try the
following:



Execute sudo mosquitto -v -c /etc/mosquitto/mosquitto.conf in a Terminal. This
will start Mosquitto in the foreground and any start up or configurations
errors will be shown on your Terminal.
Read the troubleshooting comments in the mosquitto_pyiot.conf file for
additional suggestions.

The default configuration of Mosquitto after installation creates an unencrypted and
unauthenticated MQTT broker service. The Mosquitto documentation contains details
regarding its configuration and how to enable authentication and encryption. You will find
links in the Further reading section at the end of this chapter.

Now that we have Mosquitto installed and running, we can explore MQTT
concepts and perform examples to see them in practice.

Learning MQTT by example
MQTT is a broker-based publishing and subscription messaging protocol
(frequently paraphrased as pub/sub), while an MQTT broker (just like the
Mosquitto MQTT broker we installed in the previous section) is a server that
implements the MQTT protocol. By using an MQTT-based architecture,
your applications can essentially hand off all complex messaging handling and
routing logic to the broker so they can remain solution-focused.

MQTT clients (for example, your Python programs and the command-line tools
we are about to use) create a subscription with the broker and subscribe to
message topics they are interested in. Clients publish messages to a topic, and it
is the broker that is then responsible for all message routing and delivery
assurances. Any client may assume the role of a subscriber, a publisher, or both.

A simple conceptual MQTT-based system involving a pump, water tank, and
controller application is illustrated in Figure 4.2:



Figure 4.2 – MQTT example

Here is a high-level description of system components:

Think of the Water Level Sensor MQTT client as the software connected to
a water level sensor in a water tank. This client assumes the role of a
publisher in our MQTT example. It periodically sends (that is, publishes)
messages about how full the water tank is to the MQTT broker.
Think of the Pump MQTT client as a software driver that is capable of
switching a water pump on or off. This client assumes both the role of a
publisher and subscriber in our example:

As a subscriber, it can receive a message (via a subscription)
instructing it to switch the pump on or off.
As a publisher, it can send a message indicating whether the pump is
on and pumping water or off.

Think of the Controller MQTT client as the application where all of the
control logic resides. This client also assumes both the roles of
a publisher and subscriber:

As a publisher, this client can send a message that will tell the pump to
switch on or off.
As a subscriber, this client can receive messages from both the water
tank level sensor and the pump.

By way of example, the Controller MQTT client application could be configured
to switch on the pump when the water level in the tank falls below 50% and
switch off the pump when the level reaches 100%. This controller application
may also include a dashboard user interface that displays the current water level
in the tank and a status light indicating whether the pump is on or off.



An important point to note regarding our MQTT system is that each client is
unaware of the other clients—a client only ever connects to and interacts with
the MQTT broker, which then routes messages as appropriate to clients. This
routing is achieved using message topics, which we will cover later in the
section entitled Exploring MQTT topics and wildcards.

It's understandable why the pump would need to receive a message to tell it to
turn on or off, but what about the pump's need to also send a message stating
whether it is on or off? If you wondered about this, here is the reason. MQTT
messages are send-and-forget, meaning that a client does not get an application-
level response to a message that it publishes. So, in our example, while the
controller client can publish a message asking the pump to turn on, without the
pump publishing its status, the controller has no way of knowing whether the
pump actually turned on.

In practice, the pump would publish its on/off status every time it turns on or off.
This would allow the controller's dashboard to update the pump's status indicator
in a timely manner. Furthermore, the pump would also periodically publish its
status (just like the water level sensor) independent of any requests it receives to
turn on or off. This way, the controller application can monitor the connection
and availability of the pump and detect whether the pump goes offline.

For now, if you can grasp the basic ideas presented in the preceding example,
then you are well on your way to understanding at a deeper level the core MQTT
concepts that will be our focus for the remainder of this chapter. By the time we
finish, you will have a fundamental end-to-end understanding of how to work
with and design MQTT-based applications. 

We will start by learning how to publish and subscribe to messages.

Publishing and subscribing MQTT messages

Let's work through the steps to send (that is, publish) and receive (that is,
subscribe to) messages using MQTT:

1. In a Terminal, run the following command. mosquitto_sub (Mosquitto
subscribe) is a command-line tool to subscribe to messages:



# Terminal #1 (Subscriber)

$ mosquitto_sub -v -h localhost -t 'pyiot'

The options are as follows:

-v (--verbose): verbose is so we get both the message topic and
message payload printed on the Terminal.
-h (--host): localhost is the host of the broker we want to connect to;
here it's the one we just installed. The default port used is 1883.
-t (--topic): pyiot is the topic we want to subscribe to and listen to.

In this chapter, we will require two and sometimes three Terminal sessions for the examples.
The first line of a code block will indicate which Terminal you need to run a command in; for
example, Terminal #1 in the preceding code block, and Terminal #2 in the following code
block.

2. Open a second Terminal and run the following
command. mosquitto_pub (Mosquitto publish) is a command-line tool to
publish messages:

# Terminal #2 (Publisher)

$ mosquitto_pub -h localhost -t 'pyiot' -m 'hello!'

Let's look at the options:

-h and -t have the same meaning as in the preceding subscription
command.
-m 'hello!' (--message) is the message we want to publish. Messages in
MQTT are simple strings— if you're wondering about JSON, it just
needs to be serialized/deserialized to strings.

3. On Terminal #1, we see the topic and message, hello!, printed:

# Terminal #1 (Subscriber)

$ mosquitto_sub -v -h localhost -t 'pyiot'

pyiot hello!

The final line is in the format <topic> <message payload>.

The hello! message is preceded by the topic name, pyiot, because we have used the -v option to
mosquitto_sub. Without the -v option, if we were subscribing to multiple topics, we could not
identify which topic a message belonged to.

Now, we've learned how to publish and subscribe to messages with a simple
topic. But is there any way we can organize these messages in a better way?



Read on. 

Exploring MQTT topics and wildcards

MQTT topics are used to categorize, or group, messages together in a
hierarchical format. We have already been working with topics in our proceeding
command-line examples, but in a non-hierarchical fashion. Wildcards, on the
other hand, are special characters used by a subscriber to create flexible topic
matching patterns.

Here are a few hierarchical topic examples from a hypothetical building
with sensors. The hierarchy is delimited by the / character:

level1/lounge/temperature/sensor1

level1/lounge/temperature/sensor2

level1/lounge/lighting/sensor1

level2/bedroom1/temperature/sensor1

level2/bedroom1/lighting/sensor1

There is no need to pre-create a topic on an MQTT broker. Using the
default broker configuration (which we are), you just publish and subscribe to
topics at will.

When the Mosquitto broker is configured to use authentication, there is the possibility to
restrict access to topics based on a client ID and/or username and password.

Messages must be published to a specific topic such as pyiot, while subscriptions
can be made to a specific topic, or a range of topics, by using the wildcard
characters, + and #:

+ is used to match a single element of the hierarchy.
# is used to match all remaining elements in a hierarchy (it can only be at
the end of a topic query).

Subscriptions to topics and wildcards are best explained by example. Using the
aforementioned hypothetical building with sensors, consider the examples in the
following table:



We want to subscribe
to... Wildcard topic Topic matchesWe want to subscribe
to... Wildcard topic Topic matches

All temperature
sensors everywhere +/+/temperature/+

level1/lounge/temperature/sensor1

level1/lounge/temperature/sensor2

level2/bedroom1/temperature/sensor1

All light sensors
everywhere +/+/lighting/+

level1/lounge/lighting/sensor1

level2/bedroom1/lighting/sensor1

Every sensor on
level 2 level2/+/+/+

level2/bedroom1/temperature/sensor1

level2/bedroom1/lighting/sensor1

Every sensor on
level 2

(a simpler way
where # matches
every remaining
child)

level2/#

level2/bedroom1/temperature/sensor1

level2/bedroom1/lighting/sensor1



We want to subscribe
to... Wildcard topic Topic matches

Only
sensor1 everywhere +/+/+/sensor1

level1/lounge/temperature/sensor1

level1/lounge/lighting/sensor1

level2/bedroom1/temperature/sensor1

level2/bedroom1/lighting/sensor1

Only
sensor1 everywhere

(a simpler way
where # matches
every remaining
child)

#/sensor1

Invalid because # can only be at the
end of the topic query

Every topic # Matches everything

Broker information $SYS/#

This is a special reserved topic
where the broker publishes
information and runtime statistics.

Table 1 - MQTT wildcard topic examples

What may be evident from the preceding examples is that you need to take care
when designing topic hierarchies for an application so that subscribing to
multiple topics using wildcards is consistent, logical, and easy.

If you are subscribing using the + or # wildcards with mosquitto_sub, remember to use the -v (--
verbose) option so that the topic name is printed in the output, for example, mosquitto_sub -h
localhost -v -t '#'.



Try a few examples for yourself on the command line by mixing and matching
the preceding topics and wildcards to get a feel for how topics and wildcards
work. Following are the steps for one example where mosquitto_sub subscribes to
all childtopics that have the parent temperature two levels down from the root
topic:

1. In a Terminal, start a subscriber that subscribes to a wildcard topic:

# Terminal #1 (Subscriber)

mosquitto_sub -h localhost -v -t '+/+/temperature/+'

2. Using the topics from Table 1 – MQTT wildcard topic examples, here are
two mosquitto_pub commands that will publish messages that will be received
by the mosquitto_sub command in Terminal #1:

# Terminal #2 (Publisher)

$ mosquitto_pub -h localhost -t 'level1/lounge/temperature/sensor1' -m '20'

$ mosquitto_pub -h localhost -t 'level2/bedroom1/temperature/sensor1' -m '22'

We have just seen how to subscribe to topic hierarchies using the wildcard
characters, + and *. Using topics and wildcards together is a design decision
you'll need to make on a per-project level based on how your data needs to flow
and how you envision it will be both published and subscribed by client
applications. Time invested in designing a congruent yet flexible wildcard-based
topic hierarchy will go a long way to helping you to build simpler and reusable
client code and applications.

Next, we will learn all about message Quality of Service and how this impacts
the messages you send through an MQTT Broker.

Applying Quality of Service to messages

MQTT provides three Quality of Service (QoS) levels
for individual message delivery—I am emphasizing individual message
delivery because QoS levels apply to the delivery of individual messages and not
to a topic. This will become clearer as you work through the examples.

While you, as the developer, stipulate the QoS for your messages, it's the broker
that is responsible for ensuring that the message delivery adheres to the QoS.
Here is the QoS you can apply to a message and what they mean for delivery:



QoS level Meaning Number of messages
delivered

Level 0 The message will be delivered at
most once, but maybe not at all. 0 or 1

Level 1 The message will be delivered at
least once, but perhaps more. 1 or more

Level 2 The message will be
delivered exactly once. 1

Table 2 – Message QoS levels

You might be asking the question: Level 0 and 1 seem a bit random, so why not
just always use Level 2? The answer is resources. Let's see why...

The broker and clients will consume more resources to process higher-level QoS
messages than lower-level QoS messages—for example, the broker will need
more time and memory to store and process messages, while both the broker and
clients consume more time and network bandwidth with acknowledgment
confirmations and connection handshaking.

For many use cases, including the examples that follow in this chapter, we will
not notice a difference between QoS levels 1 and 2, nor will we be able to
practically demonstrate them (Level 0 gets omitted for a good reason, which
we'll see later on when we cover message retention and durable connections).
However, set your mind to a distributed IoT system with thousands of sensors
publishing thousands or more messages every minute, and now designing around
QoS starts to make a little more sense.

QoS levels apply to both message subscriptions and message publishing, which
may seem odd when you first think it through. For example, a client may publish
a message with a QoS of 1 to a topic, while another client may subscribe to that
topic with a QoS of 2 (I know I said QoS relates to messages, not topics, but here



it's the messages flowing through the topic that the QoS relates to). What QoS is
this message, 1 or 2? For the subscriber, it's 1—let's find out why.

It's the subscribing client that chooses the highest QoS of messages it wants to
receive—but it may get lower. So, effectively, this means the delivery QoS
received by a client is downgraded to the lowest QoS of the publication or
subscription.

Here are a few examples for you to ponder:

Publisher
sends
message

Subscriber
subscribing at What subscriber gets

QoS 2 QoS 0 Delivery of message adhering to a QoS 0
(subscriber gets the message 0 or 1 time)

QoS 2 QoS 2 Delivery of message adhering to a QoS 2
(subscriber gets the message exactly once)

QoS 0 QoS 1 Delivery of message adhering to QoS 0
(subscriber gets the message 0 or 1 time)

QoS 1 QoS 2 Delivery of message adhering to QoS 1
(subscriber gets the message 1 or more times)

QoS 2 QoS 1 Delivery of message adhering to QoS 1
(subscriber gets the message 1 or more times)

Table 3 – Publisher and subscriber QoS examples



The takeaway from these examples is that, in practice, when designing or
integrating IoT solutions, you need to be aware of the QoS used by both
publishers and subscribers on either side of a topic—QoS cannot be interpreted
on either side in isolation.

Following are the steps to play out QoS scenarios and see client-broker
interactions in real time:

1. In a Terminal, run the following command to start a subscriber:

# Terminal 1 (Subscriber)

$ mosquitto_sub -d -v -q 2 -h localhost -t 'pyiot'

2. In a second Terminal, run the following command to publish a message:

# Terminal 2 (Publisher)

$ mosquitto_pub -d -q 1 -h localhost -t 'pyiot' -m 'hello!'

Here, we are again subscribing on Terminal #1, and publishing on
Terminal #2. Here are the new options used with both mosquitto_sub
and mosquitto_pub:

-d: Turn on debugging messages
-q <level>: QoS level

With debugging enabled (-d), try changing the -q parameter (to 0, 1, or 2)
on either side and publishing new messages.

3. Observe the logged messages in Terminal #1 and Terminal #2.

Among the debugging messages that will appear in Terminal #1 and
Terminal #2, you will obverse the QoS downgrade occurring at the
subscription side (look for q0, q1, or q2) while, on both sides, you will also
notice different debug messages depending on the QoS specified as the
client and broker perform handshaking and exchange acknowledgments:

# Terminal 1 (Subscriber)

$ mosquitto_sub -d -v -q 2 -h localhost -t 'pyiot' # (1)

Client mosqsub|25112-rpi4 sending CONNECT

Client mosqsub|25112-rpi4 received CONNACK (0)

Client mosqsub|25112-rpi4 sending SUBSCRIBE (Mid: 1, Topic: pyiot, QoS: 2) # 

(2)

Client mosqsub|25112-rpi4 received SUBACK

Subscribed (mid: 1): 2

Client mosqsub|25112-rpi4 received PUBLISH (d0, q1, r0, m1, 'pyiot', ... (6 

bytes)) # (3)



Client mosqsub|25112-rpi4 sending PUBACK (Mid: 1)

pyiot hello!

Following is the debug output for the subscriber on Terminal #1. Notice
the following:

At line (1), we subscribed using QoS 2 (-q 2). This is reflected in the
debug output, QoS: 2, on line (2).
On line (3), we see the QoS downgrade. The message received is QoS
1 (q1), which is the QoS that the message was published in Terminal
#1.

QoS is one of the more complex MQTT concepts to grasp. You will find links in
the Further reading section if you want to go deeper into QoS levels and the
lower level communications that take place between publishers, subscribers, and
the broker.

Now that we have covered message QoS levels, we will next learn about two
MQTT features that ensure offline clients can receive past messages when they
come back online. We will also see how QoS levels impact these features.

Retaining messages for later delivery

An MQTT broker can be instructed to retain messages published to a topic.
Message retention comes in two flavors, known as retained
messages and durable connections:

A retained message is where the broker retains the last message published
on a topic. This is also commonly referred to as the last known
good message, and any client subscribing to a topic automatically gets this
message. 
Durable connections are also about retaining messages but in a different
context. If a client tells the broker it wants a durable connection, then the
broker retains QoS 1 and 2 messages for that client while it's offline.

Unless configured specifically, Mosquitto does not retain messages or connections across
server restarts. To persist this information across a restart, a Mosquitto configuration file
must contain the entry persistence true. A default installation of Mosquitto on a Raspberry Pi
should include this entry, however, to be sure it has also been included
in mosquitto_pyiot.conf that we installed earlier. Please consult the official Mosquitto
documentation for more information and configuration parameters regarding persistence. You
will find a link in the Further reading section at the end of the chapter.



Next, we will learn about retained messages and cover durable connections in
the subsequent section.

Publishing a retained message

A publisher can ask the broker to retain a message as the last known good
message for a topic. Any newly connecting subscriber will immediately receive
this last retained message.

Let's step through an example to demonstrate retained messages:

1. Run the following, noting that we're starting with Terminal #2, the
publisher in this example:

# Terminal 2 (Publisher)

$ mosquitto_pub -r -q 2 -h localhost -t 'pyiot' -m 'hello, I have been 

retained!'

A new option has been added,-r (--retain), to tell the broker that this
message should be retained for the topic.

Only a single retained message can exist for a topic. If you publish another message using
the -r option, the previous retained message will be replaced.

2. Start a subscriber in another Terminal, and immediately you will receive the
retained message:

# Terminal 1 (Subscriber)

$ mosquitto_sub -v -q 2 -h localhost -t 'pyiot'

pyiot hello, I have been retained!

3. Press Ctrl + C in Terminal #1 to terminate mosquitto_sub.
4. Start mosquitto_sub again using the same command from step 2, and you will

see the retained message received again in Terminal #1.

You can still publish normal messages (that is, not using the -r option), however, it's the last
retained message indicated by the use of the -r option that newly connecting subscribers will
receive.

5. Our final command shows how to clear a previously retained message:

# Terminal 2 (Publisher)

$ mosquitto_pub -r -q 2 -h localhost -t 'pyiot' -m ''



Here, we are publishing (with -r) an empty message with -m ''. Note that we can
use -n as an alternative to -m '' to indicate an empty message. The effect of
retaining an empty message is to actually clear the retained message.

When you send an empty message to a topic to remove a retained message, any clients
currently subscribed to the topic (including offline clients with durable connections—see the
next section) will receive the empty message, so your application code must test for and
handle empty messages appropriately.

Now that you understand and know how to use retained messages, we can now
explore the other type of message retention available with MQTT, called durable
connections.

Creating durable connections

A client subscribing to a topic can ask the broker to retain, or queue, messages
for it while it's offline. This is known in MQTT terminology as a durable
connection. For durable connections and delivery to work, the subscribing client
needs to be configured and subscribe in a certain way, as follows:

The client must provide a unique client ID to the broker when it connects.
The client must subscribe with a QoS 1 or 2 (levels 1 and 2 guarantee
delivery, but level 0 does not).
The client is only guaranteed to get messages published with QoS 1 or 2.

The last two points concern an example where knowing QoS on both the
publishing and subscribing sides of a topic is very important for IoT application
design.

MQTT brokers can—and the default configuration of Mosquitto on the Raspberry Pi does—
retain messages for durable connections between broker restarts.

Let's step through an example:

1. Start a subscriber, and then immediately terminate it with Ctrl + C so that it
is offline:

# Terminal #1 (Subscriber)

$ mosquitto_sub -q 1 -h localhost -t 'pyiot' -c -i myClientId123

$ # MAKE SURE YOU PRESS CONTROL+C TO TERMINATE mosquitto_sub

The new options used are as follows:



-i <client id> (–id <client id>) is a unique client ID (this is how the
broker identifies the client).
-c (--disable-clean-session) instructs the broker to keep any QoS 1 and
2 messages that arrive at subscribed topics even while the client is
disconnected (that is, retain the messages).

It's worded a bit backward, but by starting the subscriber with the -c
option, we've asked the broker to create a durable connection for our
client by not clearing out any stored messages on connecting.

If you subscribe to a range of topics using wildcards (for example, pyiot/#) and request a
durable connection, then all messages for all topics in the wildcard hierarchy will be retained
for your client.

2. Publish a few messages (while the subscriber in Terminal #1 is still
offline):

# Terminal #2 (Publisher)

$ mosquitto_pub -q 2 -h localhost -t 'pyiot' -m 'hello 1'

$ mosquitto_pub -q 2 -h localhost -t 'pyiot' -m 'hello 2'

$ mosquitto_pub -q 2 -h localhost -t 'pyiot' -m 'hello 3

3. Bring the subscriber in Terminal #1 back online, and we will see that the
messages published in step 2 are delivered:

# Terminal 1 (Subscriber)

$ mosquitto_sub -v -q 1 -h localhost -t 'pyiot' -c -i myClientId123

pyiot hello 1

pyiot hello 2

pyiot hello 3

Try steps 1 to 3 again, only this time omit the -c option from the subscriber in
steps 1 and 3 and you will notice that no messages are retained. Also, when you
connect without the -c flag when there are retained messages waiting to be
delivered, then all retained messages are purged (and is how you would clear
retained messages for a client if you wanted to).

If you are using both retained messages (that is, last known good message) and durable
connections together on a single topic and reconnect an offline subscriber, you will receive the
retained message twice—one is the retained message, while the second is from the durable
connection.

When building solutions around MQTT, your knowledge of retained messages
and durable connections will be key to designing systems that are resilient and
reliable, particularly where you need to handle offline clients. Retained (last



known good) messages are ideal for initializing a client when they come back
online, while durable connections will help you to retain and deliver messages in
bulk for any offline client that must be able to consume every message for topics
that it subscribes to.

Well done! We have covered a lot and you actually now know most of the core
MQTT features you will use when building an MQTT-based IoT solution. Our
last feature to learn about is known as a Will.

Saying goodbye with a Will

Our final MQTT feature for exploration is known as a Will. A client (publisher
or subscriber) can register a special Will message with the broker so that if the
client dies and disconnects from the broker abruptly (for example, it loses its
network connection or its batteries go flat), the broker on the clients' behalf will
send out the Will message notifying subscribers of the device's demise.

Wills are just a message and topic combination similar to what we have been
using previously. 

Let's see Wills in action, and for this, we're going to need three Terminals:

1. Open a Terminal and start a subscriber with the following command:

# Terminal #1 (Subscriber with Will)

$ mosquitto_sub -h localhost -t 'pyiot' --will-topic 'pyiot' --will-payload 

'Good Bye' --will-qos 2 --will-retain

The new options are as follows:

--will-payload: This is the Will message.
--will-topic: This is the topic the Will message will be published on.
Here we are using the same topic that we are subscribing to, but it
could be a different topic.
--will-qos: This is the QoS for the Will message.
--will-retain: If this option is present, then if the client disconnects
abruptly, the Will message will be retained by the broker as
the retained (last known good) message for the Will topic.

2. Start a subscriber in a second Terminal with the following command:



# Terminal #2 (Subscriber listening to Will topic).

$ mosquitto_sub -h localhost -t 'pyiot'

3. And in a third Terminal, publish a message using the following command:

# Terminal #3 (Publisher)

$ mosquitto_pub -h localhost -t 'pyiot' -m 'hello'

4. Once you execute the mosquitto_pub command in step 3 on Terminal #3, you
should see hello printed on both the subscribers in Terminals #1 and #2.

5. In Terminal #1, press Ctrl + C to terminate the subscriber that registered
the Will with the broker. Ctrl + C is seen as a non-graceful or abrupt
disconnection from the broker.

6. In Terminal #2, we will see the Will's Good Bye message:

# Terminal #2 (Subscriber listening to Will topic).

$ mosquitto_sub -h localhost -t 'pyiot'

'Good Bye'

Okay, what about a graceful disconnection where the subscriber properly
closes its connection with the broker? We can demonstrate this using the
-C option with mosquitto_sub.

7. Restart the subscriber in Terminal #1 with the following command:

# Terminal #1 (Subscriber with Will)

$ mosquitto_sub -h localhost -t 'pyiot' --will-topic 'pyiot' --will-payload 

'Good Bye, Again' --will-qos 2 --will-retain -C 2

The new -C <count> option tells mosquitto_sub to disconnect (gracefully) and
exit after it has received the specified number of messages.

You will notice the Good Bye message printed immediately. This is because
we specified the --retain-will option previously in Terminal #1. This
option made the Will message become the retained or last known good
message for the topic, so newly connecting clients will receive this
message.

8. In Terminal #3, publish a new message, and the subscriber in Terminal #1
will exit. Notice in Terminal #3 that the Will message, Good Bye, Again,
is not received. This is because our Terminal #1 subscriber disconnected
gracefully from the broker because of the -C option—and in case you are
wondering about 2 in  -C 2, the retained Will message counted as the first
message.



Well done! If you have worked your way through each of the preceding MQTT
examples, then you have covered the core concepts and use of MQTT and the
Mosquitto broker. Do remember that all of these principles will apply to any
MQTT broker or client since MQTT is an open standard.

So far, we've learned about message subscriptions and publication, how we
segregate messages using topics, and how features including QoS, message
retention, durable connections, and Wills can be leveraged to control how
messages are managed and delivered. This knowledge alone provides you with
the foundations to build complex and resilient distributed IoT systems using
MQTT.

I'll leave you with one final tip (which caught me out a few times when I started
with MQTT).

If your live, retained, or queued durable connection messages seem to be vanishing into a
black hole, then check the QoS levels on both your subscribing and publishing clients. To
monitor all messages, start a command-line subscriber with QoS 2, listening to the # topic,
with both verbose and debug options enabled, for example, mosquitto_sub -q 2 -v -d -h localhost
-t '#'.

We have now completed all of our examples from the MQTT-by-example
section and learned how to interact with an MQTT broker from the command
line. Next, I want to briefly make mention of public broker services. Following
this, we'll get into code and see how we can leverage MQTT with Python.

Using MQTT broker services

There are several MQTT broker service providers on the internet that you can
use to create MQTT-based messaging applications if you do not want to host
your own MQTT broker. Many also offer free public MQTT brokers that you
can use for testing and quick proofs-of-concept—but remember they are free and
public, so do not publish any sensitive information!

If you experience frustration, disconnections, or unexpected behavior with a free
public broker service, then test and verify your application with a local broker.
You cannot reliably know or verify the traffic congestion, topic usage, or
configuration details of an open public broker and how that may be impacting
your application.



Here are a few free public brokers you can try. Just replace the -
h localhost option in the preceding examples with the address of the broker. Visit
the following pages for more information and instructions:

https://test.mosquitto.org

http://broker.mqtt-dashboard.com

https://ot.eclipse.org/getting-started

In the following sections, we will move a level higher. Finally, we're up to the
Python bit of MQTT! Rest assured that everything we just covered will be
invaluable when you develop IoT applications that use MQTT because the
command-line tools and examples we covered will become an important part of
your MQTT development and debugging toolkit. We will be applying the core
MQTT concepts we have learned already, only this time using Python and the
Paho-MQTT client library.

Introducing the Python Paho-MQTT
client library
Before we get into Python code, we first need an MQTT client library for
Python. At the start of this chapter in the Technical requirements section, we
installed the Paho-MQTT client library, which was part of requirements.txt.

If you are new to MQTT and have not read the preceding section, Learning MQTT by
example, I recommend stopping now and reading it first so you gain an understanding of
MQTT concepts and terminology that will be used in the Python examples that follow. 

The Paho-MQTT client library comes from the Eclipse Foundation, which also
maintains the Mosquitto MQTT broker. In the Further reading section, you will
find a link to the official Paho-MQTT Client Library API documentation. After
completing this chapter, if you wish to deepen your understanding of this library
and its capabilities, I recommend reading through the official documentation and
the examples found therein.

The Python Paho-MQTT library has three core modules:

Client: This gives you full life cycle management of MQTT in your Python
application.

https://test.mosquitto.org/
http://broker.mqtt-dashboard.com/
https://iot.eclipse.org/getting-started/#sandboxes


Publisher: This is a helper module for message publishing.
Subscriber: This is a helper module for message subscribing.

The client module is ideal if you are creating more complex and long-running
IoT applications, whereas the publisher and subscriber helper modules are
convenient for short-lived applications and situations where full life cycle
management is not warranted.

The following Python examples will connect to your local Mosquitto MQTT broker that we
installed in the Installing the Mosquitto MQTT broker section previously.

We will be using the Paho client module so we can create a more complete
MQTT example. However, once you can follow and understand the client
module, creating alternatives using the helper modules will be a piece of cake.

As a reminder, we will be working with the breadboard circuit we created in Chapter 2, Getting
Started with Python and IoT, Figure 2.7.

Now that we have a basic familiarity with the Paho-MQTT library, we
will next start by briefly reviewing what the Python program and the
accompanying web page client do and see Paho-MQTT in action.

Controlling an LED with Python and
MQTT
Previously, in the Installing the Mosquitto MQTT broker section, we tested the
installation by visiting the http://localhost:8083 URL, which gave us a web page
with a slider. However, at the time, we could not change the LED's brightness.
When you moved the slider, the web page was publishing MQTT messages to
the Mosquitto broker, but no program was receiving the messages to change the
LED's brightness.

In this section, we'll see the Python code that subscribes to a topic called led and
processes the messages generated by the slider. We will start by running the
Python code and making sure we can change the LED's brightness.

Running the LED MQTT example



You will find the code in the chapter04/mqtt_led.py file. Please review this file
before proceeding to get an overall idea of what it contains and then follow these
steps:

1. Run the program in a Terminal with the following command:

# Terminal #1

(venv) $ python mqtt_led.py

INFO:main:Listening for messages on topic 'led'. Press Control + C to exit.

INFO:main:Connected to MQTT Broker

2. Now, open a second Terminal window and try the following, and the LED
should turn on (be careful to make sure the JSON string is formed
correctly):

# Terminal #2

$ mosquitto_pub -q 2 -h localhost -t 'led' -r -m '{"level": "100"}'

3. Did you notice the -r (--retain) option used in step 2? Terminate and
restart mqtt_led.py and watch the log output in Terminal #1 and the LED.
You should notice on startup that mqtt_led.py receives the LED's brightness
value from the topic's retained message and initializes the LED's brightness
accordingly.

4. Next, visit the http://localhost:8083 URL and make sure the LED changes its
brightness as you move the slider.

Leave the web page open, and try the command in step 2 again. Observe what happens to the
slider—it will stay in sync with the new level value you specified.

5. Next, let's see durable connections in action. Terminate mqtt_led.py again and
perform the following:

On the web page, move the slider around randomly for about 5
seconds. As you move the slider, messages are being published to the
broker on the led topic. They will be queued for delivery to mqtt_led.py
when it reconnects.
Restart mqtt_led.py and observe the Terminal and LED. You will notice
a flood of messages on the Terminal, and the LED will flicker as the
queued messages are delivered and processed by mqtt_led.py.

By default, Mosquitto is configured to queue 100 messages per client that are using a durable
connection. A client is identified by its client ID that you provide when connecting to the
broker.



Now that we have interacted with and seen mqtt_led.py in action, let's take a look
at its code.

Understanding the code

As we discuss the code found in chapter04/mqtt_led.py, pay particular attention to
how the code connects to the MQTT broker and manages the connection life
cycle. Furthermore, as we cover how the code receives and processes
messages, try to relate the code workflow back to the command-line examples
that we used to publish the message in the previous subsection, Running the LED
MQTT example.

Once you have an understanding of our Python code and how it integrates with
our MQTT broker, you'll have an end-to-end working reference solution built
around MQTT messaging that you can adapt for your own needs and projects.

We will start by looking at the imports. As usual, we will skip over any common
code that we have already covered in previous chapters, including logging setup
and GPIOZero-related code.

Imports

The only new import we have in this example is for the Paho-MQTT client:

import paho.mqtt.client as mqtt  # (1)

At line (1), we are importing the Paho-MQTT client class and giving it the
alias, mqtt. As mentioned previously, this is the client class that will allow us to
create a full life cycle MQTT client in Python.

Next, we will consider global variables.

Global variables

The BROKER_HOST and BROKER_POST variables at line (2) are referring to our locally
installed Mosquitto MQTT broker. Port 1883 is the standard default MQTT port:

# Global Variables

...

BROKER_HOST = "localhost"   # (2)

BROKER_PORT = 1883



CLIENT_ID = "LEDClient"     # (3)

TOPIC = "led"               # (4)

client = None # MQTT client instance. See init_mqtt()   # (5)

...

At line (3), we define CLIENT_ID, which will be the unique client identifier we use
to identify our program with the Mosquitto MQTT broker. We must provide a
unique ID to the broker so that we can use durable connections.

At line (4), we define the MQTT topic that our program will be subscribing to,
while at line (5), the client variable is a placeholder that will be assigned the
Paho-MQTT client instance, which we'll see shortly.

The set_led_level(data) method

set_led_level(data) at line (6) is where we integrate with GPIOZero to change the
brightness of our LED and the method similar to the corresponding methods we
covered in Chapter 3, Networking with RESTful APIs and Web Sockets Using
Flask, so we will not cover the internals here again:

def set_led_level(data):  # (6)

   ...

The data parameter is expected to be a Python dictionary in the form of { "level":
50 }, where the integer is between 0 and 100 to indicate the brightness
percentage.

Next, we have the callback functions for MQTT. We'll start by reviewing
on_connect() and on_disconnect().

The on_connect() and on_disconnect() MQTT callback methods

The on_connect() and on_disconnect() callback handlers are examples of the full life
cycle that is available using the Paho client class. We will see how to instantiate
a Paho client instance and register these callbacks later when we cover the
init_mqtt() method.

The parameters of interest to on_connect() at line (7) in the following code block
are client, which is a reference to the Paho client class, and result_code, which is
an integer describing the connection result. We see result_code used at line (8) to



test the success of the connection. Notice the connack_string() method, which is
used for a connection failure to translate result_code into a human-readable string.

When we speak of the MQTT client and see the client parameter at line (7) in the following
code block, remember this is our Python code's client connection to the broker, NOT a
reference to a client program such as the web page. This client parameter is very different in
meaning to the client parameter we saw used in callback handlers for our Flask-SocketIO
Web Socket server in Chapter 3, Networking with RESTful APIs and Web Sockets Using Flask.

For reference, the user_data parameter can be used to pass around private data
between a Paho client's callback methods, while flags is a Python dictionary
containing response and configuration hints from the MQTT broker:

def on_connect(client, user_data, flags, result_code): # (7)

    if connection_result_code == 0:                    # (8)

        logger.info("Connected to MQTT Broker")

    else:

        logger.error("Failed to connect to MQTT Broker: " + 

                     mqtt.connack_string(result_code))

    client.subscribe(TOPIC, qos=2)                     # (9)

At line (9), we see the Paho client instance method, subscribe(), used to subscribe
to the led topic using the TOPIC global variable, which we saw defined earlier. We
also indicate to the broker that our subscription is a QoS level 2.

Always subscribe to topics in an on_connect() handler. This way, if the client ever loses the
connection to the broker, it can re-establish subscriptions when it reconnects.

Next, at line (10) in the following, we have the on_disconnect() handler, where we
are simply logging any disconnects. The method parameters have the same
meanings as for the on_connect() handler:

def on_disconnect(client, user_data, result_code):  # (10)

    logger.error("Disconnected from MQTT Broker")

We will now move on to the callback method that handles incoming messages
for the led topic that we subscribed to in on_connect() on line (9).

The on_message() MQTT callback method

It's the on_message() handler at line (11) that is called whenever a new message for
a subscribed topic is received by our program. The message is available through
the msg parameter, which is an instance of MQTTMessage. 



At line (12), we access the payload property of msg and decode it into a string. We
expect our data to be a JSON string (for example, { "level": 100 }), so we parse
the string into a Python dictionary using json.loads() and assign the result to data.
If the message payload is not valid JSON, we catch the exception and log an
error:

def on_message(client, userdata, msg):                    # (11)

    data = None

    try:                                                  

        data = json.loads(msg.payload.decode("UTF-8"))    # (12)

    except json.JSONDecodeError as e:

        logger.error("JSON Decode Error: " 

                   + msg.payload.decode("UTF-8"))

    if msg.topic == TOPIC:                                # (13)

        set_led_level(data)                               # (14)

    else:

        logger.error("Unhandled message topic {} 

                 with payload " + str(msg.topic, msg.payload)))

Using the topic property of msg on line (13), we check that it matches our
expected led topic, which it will in our case since our program is only
subscribing to this specific topic. However, this provides a point of reference
regarding where and how you would perform conditional logic and routing for a
program that subscribes to multiple topics.

Finally, at line (14), we pass our parsed message to the set_led_level() method,
which, as discussed, changes the brightness of our LED.

Next, we will learn how the Paho client is created and configured.

The init_mqtt() method

We see the Paho-MQTT client instance created and assigned to the global client
variable at line (15). A reference to this object is the  client parameter we saw
previously in the on_connect(), on_disconnect(), and on_message() methods.

The client_id parameter is set to be the client name we defined earlier in CLIENT_ID,
while clean_session=False tells the broker that it must not clear any stored messages
for our client when we connect. As we discussed earlier in the command-line
examples, this is the back-to-front way of saying we want a durable connection
so any messages published to the led topic are stored for our client when it's
offline:



def init_mqtt():

    global client

    client = mqtt.Client(                                       # (15)

        client_id=CLIENT_ID,

        clean_session=False)

    # Route Paho logging to Python logging.

    client.enable_logger()                                      # (16)

    # Setup callbacks

    client.on_connect = on_connect                              # (17)

    client.on_disconnect = on_disconnect

    client.on_message = on_message

    # Connect to Broker.

    client.connect(BROKER_HOST, BROKER_PORT)                    # (18)

An important point to note is on line (16). Our program is using the standard
Python logging packages, so we need to make this call to client.enable_logger() to
ensure that we get any Paho-MQTT client log message. Missing this call means
helpful diagnostic information may not get logged.

Finally, at line (18), we connect to the Mosquitto MQTT broker. It's our
on_connect() handler that will be called once the connection is established.

Next, we will see how our program is started.

Main entry point

After initializing our LED and client instances, we get to the program's main
entry point.

We are registering a signal handler to capture Ctrl + C key combinations at line
(19). The signal_handler method (not shown) simply turns off our LED and
gracefully disconnects from the broker:

# Initialise Module

init_led()

init_mqtt()

if __name__ == "__main__":

    signal.signal(signal.SIGINT, signal_handler)    # (19)

    logger.info("Listening for messages on topic '" 

       + TOPIC + "'. Press Control + C to exit.")

    client.loop_start()                             # (20)

    signal.pause()

At line (20), the call to client.loop_start() is what allows our client to start,
connect to the broker, and receive messages.



Did you notice that the LED program is stateless? We are not storing or persisting any LED
level in code or to disk. All our program does is subscribe to a topic on the broker and change
the LED's brightness using GPIOZero. We effectively hand all state management over to the
MQTT broker by relying on MQTT's retained message (also known as the last known good
message) facility.

We have now finished exploring the Python code that interacts with both the
LED and MQTT broker. We learned how to use the Python Paho-MQTT library
to connect to an MQTT broker and subscribe to an MQTT topic. As we received
messages on the subscribed topic, we saw how to process them and changed the
brightness level of our LED according to the message payload.

The Python and Paho-MQTT framework and example we covered will provide
you with a solid starting point for your own MQTT-based IoT projects.

Next, we will be looking at a web client that uses MQTT together with Web
Sockets. This web client will connect to our Mosquitto MQTT broker and
publish messages to control our LED.

Building a web-based MQTT client
In Chapter 3, Networking with RESTful APIs and Web Sockets Using Flask, we
covered a code example using Web Sockets, which included an HTML file and
JavaScript web client. In this section, we will also be looking at a Web Socket-
based web client built using HTML and JavaScript. However, this time, we will
be leveraging the built-in Web Socket features provided by the Mosquitto MQTT
broker and the compatible JavaScript Paho-JavaScript Web Sockets library (you
will find a link to this library in the Further reading section).

For comparison, in Chapter 3, Networking with RESTful APIs and Web Sockets Using Flask, we
created our Web Socket server ourselves in Python using Flask-SocketIO, while our web client
used the Socket.io JavaScript Web socket library.

We interacted with the web client we are about to explore to control our LED
previously in the  Installing the Mosquitto MQTT broker at section step 7. You
might like to quickly review step 7 to refamiliarize yourself with the web client
and how to access it in your web browser.

You will find the code for the web page client in
the chapter04/mosquitto_www/index.html file. Please review this file before proceeding.



Understanding the code

While the JavaScript library we are using in this example is different, you will
find that the general structure and use of the JavsScript code are similar to the
code we saw for the socket.io-based web client in Chapter 3, Networking with
RESTful APIs and Web Sockets Using Flask. As usual, we will start by looking at
the imports.

Imports

Our web client imports the Paho-MQTT JavaScript client library at line (1):

<title>MQTT Web Socket Example</title>

<script src="./jquery.min.js"></script>

<script src="./paho-mqtt.js"></script>  <!-- (1) -->

paho-mqtt.js can be also found in the chapter04/mosquitto_www folder.

The official documentation page for the Paho-MQTT JavaScript library is
available at https://www.eclipse.org/paho/clients/js, while its official GitHub page is
found at https://github.com/eclipse/paho.mqtt.javascript.

When you explore the Paho-MQTT JavaScript API further, start at its GitHub site and make
note of any breaking changes that are mentioned. The documentation pages are known to
contain code fragments that do not reflect the latest GitHub code base.

Next, we encounter the global variables.

Global variables

At line (2), we initialize a Client_ID constant that will identify our JavaScript
client with the broker.

Each Paho JavaScript MQTT client must have a unique hostname, port, and
client ID combination when it connects to the broker. To ensure we can run
multiple web pages on a single computer for testing and demonstration, we use
a random number to create a quasi-unique client ID for each web page:

<script type="text/javascript" charset="utf-8">

    messagePubCount = 0;

    const CLIENT_ID = String(Math.floor(Math.random() * 10e16)) // (2)

    const TOPIC   = "led";                                      // (3)

https://www.eclipse.org/paho/clients/js
https://github.com/eclipse/paho.mqtt.javascript
https://www.eclipse.org/paho/clients/js


At line (3), we define the TOPIC constant with led, the name of the MQTT topic
that we will be subscribing and publishing to shortly. Next, we create our client
instance.

The Paho JavaScript MQTT client

At line (4), we create our Paho-MQTT Client instance and assign it to the client
variable.

The parameters to Paho.MQTT.Client() are the broker's hostname and port. We are
serving this web page via Mosquitto, so the broker's host and port will be the
same as web pages:

const client = new Paho.Client(location.hostname,        // (4)

                               Number(location.port),

                               CLIENT_ID); 

You may have noticed in the http://localhost:8083 URL that the port is 8083, while
in Python we used port 1883:

Port 1883 is the MQTT protocol port on the broker. Our Python program
connects directly to the broker on this port.
We previously configured port 8083 as a Web Socket port on the Mosquitto
broker. Web pages can speak HTTP and Web Socket protocols, not MQTT.

This raises an important point. While we're using the term MQTT in the context
of our JavaScript code, we're really proxying the MQTT idea using Web
Sockets back and forth to the broker.

When we speak of the MQTT client and created the client instance at line (4), remember this
is our JavaScript code's client connection to the broker. 

Next, we see how to connect to the broker and register an onConnect handler
function.

Connecting to the broker

We define our onConnectionSuccess() handler at line (5), which will be called after
our client successfully connects to the broker. When we successfully connect, we
then update the web page to reflect the successful connection and enable the
slider control:



onConnectionSuccess = function(data) {         // (5)

    console.log("Connected to MQTT Broker");

    $("#connected").html("Yes");

    $("input[type=range].brightnessLevel")

          .attr("disabled", null);

                  

    client.subscribe(TOPIC);                   // (6)

};

client.connect({                               // (7)

   onSuccess: onConnectionSuccess,

   reconnect: true

 });       

Next, at line (6), we subscribe to the led topic. It's at line (7) that we connect to
the broker. Notice that we're registering the onConnectionSuccess function as the
onSuccess option.

Remember, similar to the Python example, always subscribe to topics in an 
onSuccess handler. This way, if the client ever loses the connection to the broker, it can re-
establish subscriptions when it reconnects.

We also specify the reconnect: true option so that our client will automatically
reconnect to the broker if it loses its connection.

It has been observed that it may take up to a minute for the JavaScript Paho-MQTT client to
reconnect after losing a connection, so please be patient. This is in contrast to the Python
Paho-MQTT client, which reconnects almost instantly.

Next, we have another two handlers to review.

The onConnectionLost and onMessageArrived handler methods

In the following code, at lines (8) and (9), we see how to register
an onConnectionLost and onMessageArrived handler with our Paho-MQTT client
instance:

client.onConnectionLost = function onConnectionLost(data) {    // (8)

  ...

}

client.onMessageArrived = function onMessageArrived(message) { // (9)

   ...

}

These two functions are similar in principle to their corresponding functions in
the socket.io example from the previous Chapter 3, Networking with RESTful APIs
and Web Sockets Using Flask, in that they update the slider and web page text
based on the data found in their respective data and message parameters.



Next, we have our document ready function.

JQuery document ready function

Finally, we encounter the document ready function at line (1o) where we
initialize our web page content and register the event listener for the slider:

$(document).ready(function() {                                   // (10)

    $("#clientId").html(CLIENT_ID);

    // Event listener for Slider value changes.

    $("input[type=range].brightnessLevel").on('input', function() {

        level = $(this).val();

        payload = {

            "level": level

         };

        // Publish LED brightness.

        var message = new Paho.Message(                         // (11)

           JSON.stringify(payload)

        );

        message.destinationName = TOPIC;                        // (12)

        message.qos = 2;

        message.retained = true;                                // (13)

        client.send(message);

    });

});

Within the sliders event handler at line (11), we see how to create an MQTT
message. Notice the use of JSON.stringify(payload). The Paho.Message constructor
expects a String parameter, not an Object, so we must convert the payload
variable (which is an Object) in to a string.

Starting at line (12), we set the message publication topic to led
with message.destinationName = TOPIC before flagging its QoS level as 2.

Next, at line (13), with message.retained = true, we indicate that we want this
message to be retained so that it is automatically delivered to new clients
subscribing to the led topic. The retention of this message is what allows
mqtt_led.py to reinitialize the LED's previous brightness between restarts. 

Well Done! We have now covered both the Python and JavaScript sides of a
simple MQTT-based application.

Summary



In this chapter, we have explored and practiced the core concepts of MQTT.
After installing and configuring the Mosquitto MQTT broker on your Raspberry
Pi, we moved straight into learning a range of examples on the command line.
We learned how to publish and subscribe to MQTT messages, how to understand
topic construction and name hierarchies, and how we can attach a QoS level to a
message.

We also covered durable connections and retained messages, two mechanisms
offered by MQTT brokers for storing messages for later delivery. We concluded
our walk-through of MQTT concepts by exploring a special message and topic
type known as a Will, whereby a client can register a message with a broker that
gets automatically published to a topic in cases where the client abruptly loses its
connection.

Next, we reviewed and walked through a Python program that used the Paho
Python MQTT library to subscribe to an MQTT topic and control the brightness
of our LED in response to the messages it received. We followed this with a
walk-through of a web page built with the Paho JavaScript MQTT library that
published the messages consumed by our Python program.

You now have a working knowledge of MQTT and a practical code framework
you can now leverage for your own IoT applications. This is in addition to the
other networking approaches and code frameworks that we've explored in earlier
chapters, such as the dweet.io service, Flask-RESTful, and Flask-
SocketIO. Which approach you use for your projects all depends on what you
are trying to create and, of course, your own personal preference. For larger
projects and projects where you need to integrate with external systems, you may
find yourself needing to leverage multiple approaches in tandem and even find
the need to research and explore additional techniques. I do not doubt that your
learning and understanding of the alternative networking approaches we've
covered so far will be of value and help with your understanding of other
approaches you encounter.

In the next chapter, Connecting Python to the Physical World, we will be
exploring a range of topics related to how you connect your Raspberry Pi to the
world. We will run through popular Python GPIO library options in addition to
GPIOZero and PiGPIO and look at the different types of electronic interfacing
options and configurations that are available with a Raspberry Pi. We also have a



comprehensive exercise where we will be adding an analog-to-digital converter
to your Raspberry Pi and using it to create a program to explore PWM
techniques and concepts.

Questions
As we conclude, here is a list of questions for you to test your knowledge
regarding this chapter's material. You will find the answers in the Assessments
section of the book:

1. What is MQTT?
2. Your retained MQTT messages never get delivered. What should you

check?
3. Under what condition will an MQTT broker publish a Will message?
4. You choose to use MQTT as your IoT application's messaging layer and

must ensure that messages are sent and received. What is the minimum QoS
level required?

5. You develop an application using MQTT and use the Mosquitto broker, but
now you need to use a different broker. What does this mean for your code
base and deployment configuration?

6. Where in code (hint: which handler method) should you subscribe to
MQTT topics and why?

Further reading
We covered the basics of MQTT from an operational level in this chapter. If you
want to learn more about MQTT from a protocol and data level, HiveMQ (an
MQTT broker and service provider) has an excellent 11-part series on the MQTT
protocol available at https://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqt
t.

The home page of the Mosquitto MQTT broker and client tools are available at
the following URL:

Mosquitto MQTT broker: https://mosquitto.org

https://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt/
https://mosquitto.org/


The documentation and API references for the Paho-MQTT libraries we used in
this chapter are available at the following URLs:

Paho-MQTT Python library: https://www.eclipse.org/paho/clients/python
Paho-MQTT JavaSctipt library: https://www.eclipse.org/paho/clients/js

In addition to MQTT, HTTP RESTful APIs, and Web Sockets, there are
complimentary communication protocols that are specially designed for
constrained devices, known as CoRA and MQTT-NS. The Eclipse Foundation
has a summary of these protocols available at https://www.eclipse.org/community/eclip
se_newsletter/2014/february/article2.php.

https://www.eclipse.org/paho/clients/python/
https://www.eclipse.org/paho/clients/js
https://www.eclipse.org/community/eclipse_newsletter/2014/february/article2.php


Section 2: Practical Electronics for
Interacting with the Physical World

In this section, we are going to explore concepts related to connecting your
Raspberry Pi to the physical world with electronics using its P1 header,
which is the large set of pins on the motherboard that we commonly just
call the GPIO pins.

In essence, this section is the bridge between the software world and the
electronics world. Our goal is to cover the core terminology and practical
concepts that you need to know to start interfacing with both simple and
complex electronics. By the end of this section, you will have the
knowledge to further explore and investigate the challenges of interfacing
electronics to a Raspberry Pi and make informed decisions and carry out
directed research as your use cases and interests desire.

This section comprises the following chapters:

Chapter 5, Connecting Your Raspberry Pi to the Physical World
Chapter 6, Electronics 101 for the Software Engineer



Connecting Your Raspberry Pi to the
Physical World

In this chapter, we will explore hardware and software concepts related to
connecting your Raspberry Pi to the physical world. We will be covering
popular numbering schemes that are used by GPIO libraries to refer to the
GPIO header pins on your Raspberry Pi and provide an overview of popular
GPIO libraries, in addition to the GPIOZero and PiGPIO libraries that we
used in earlier chapters. As we will learn, understanding GPIO numbering
schemes is crucial to ensure your understanding of how GPIO libraries work
with GPIO pins.

Our journey will also include a conceptual overview and discussion of the
many different ways in which electronics can be interfaced with our
Raspberry Pi before we will finish with a detailed exercise and practical
demonstration of two important electronic concepts—Pulse-Width
Modulation (PWM) and analog-to-digital conversion.

We will cover the following topics in this chapter:

Understanding Raspberry Pi pin numbering
Exploring popular Python GPIO libraries
Exploring Raspberry Pi electronic interfacing options
Interfacing with an analog-to-digital converter

Technical requirements
To perform the exercises in this chapter, you will need the following:

Raspberry Pi 4 Model B
Raspbian OS Buster (with desktop and recommended software)
A minimum of Python version 3.5



These requirements are what the code examples in this book are based on.
It's reasonable to expect that the code examples should work without
modification on a Raspberry Pi 3 Model B or a different version of Raspbian
OS as long as your Python version is 3.5 or higher.

You will find this chapter's source code in the chapter05 folder in the GitHub
repository available at the following URL: https://github.com/PacktPublishing/Pr
actical-Python-Programming-for-IoT

You will need to execute the following commands in a Terminal to set up a
virtual environment and install Python libraries required for the code in this
chapter:

$ cd chapter05              # Change into this chapter's folder

$ python3 -m venv venv      # Create Python Virtual Environment

$ source venv/bin/activate  # Activate Python Virtual Environment

(venv) $ pip install pip --upgrade        # Upgrade pip

(venv) $ pip install -r requirements.txt  # Install dependent packages

The following dependencies are installed from requirements.txt:

GPIOZero: The GPIOZero GPIO library (https://pypi.org/project/gpiozer
o)
PiGPIO: The PiGPIO GPIO library (https://pypi.org/project/pigpio)
RPi.GPIO: The RPi.GPIO library (https://sourceforge.net/p/raspberry-gpio
-python/wiki/Home)
ADS1X15: The ADS11x5 ADC library (https://pypi.org/project/adafruit-
circuitpython-ads1x15)

Besides the preceding installations, we require a few physical electronic
components for the exercise in this chapter:

1 x 5 mm red LED
1 x 200 Ω resistor—its color bands will be red, black, brown, and then
gold or silver
1 x ADS1115 ADC break-out module (for example, https://www.adafruit.
com/product/1085)
2 x 10 kΩ potentiometers (any value in the range 10K to 100K will be
suitable)
A breadboard

https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://pypi.org/project/gpiozero
https://pypi.org/project/pigpio
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://www.adafruit.com/product/1085


Male-to-female and male-to-male jumper cables (also called DuPont
cables)

Understanding Raspberry Pi pin
numbering
You will have noticed by now that your Raspberry Pi has a lot of pins
sticking out of it! Since Chapter 2, Getting Started with Python and IoT, and
all subsequent chapters, we have referenced these pins by referring to them,
for example, as GPIO Pin 23, but what does this mean? It's time we
understand this in more detail.

There are three common ways in which a Raspberry Pi's GPIO pins may be
referenced, as illustrated in Figure 5.1:



Figure 5.1 – GPIO pin numbering schemes

In all of the previous chapters, we've been talking about GPIO pins from the
perspective of PiGPIO, which uses the Broadcom or BCM numbering
scheme. BCM is the most common scheme used in Python-based GPIO
libraries, and the GPIO libraries that we will discuss shortly all use BCM
exclusively or by default. However, it is useful to know that other schemes
exist because it will help when reading or debugging code fragments you
come across on the internet and other resources.

The terms GPIO and pin can be rather loosely used when it comes to identifying pins.
You need to interpret wording such as GPIO 23 or Pin 23 with consideration of the
context and scheme in which it is being used.

Let's explore these alternatives as shown in Figure 5.1:



Broadcom/BCM Numbering: This refers to the GPIO numbering of
the Broadcom chip in your Raspberry Pi. With BCM numbering, when
we say GPIO 23, we mean GPIO 23 as labeled in a BCM pin-out
diagram. This is the scheme we are using with the GPIOZero and
PiGPIO examples presented in this book.
Physical/Board/P1 Header: In this numbering scheme, the physical
pin numbers of the P1 header are used, for instance, BCM GPIO 23 =
Physical Pin 16.
WiringPi: This is a popular C GPIO library called WiringPi that
introduced its own pin mapping scheme. Due to the maturity of
WiringPi (there is a Python port), you will come across this scheme
from time to time—continuing our example, BCM GPIO 23 = Physical
Pin 16 = WiringPi Pin 4.

There are also other methods and naming used to reference pins and
interfaces to be aware of, and they include the following:

Virtual Filesystem: There is a virtual filesystem mounted at /sys for
general GPIO access,/dev/*i2c for I2C, /dev/*spi* for SPI, and
/sys/bus/w1/devices/* for 1-wire devices.
Alternative Pin Functions: The preceding BCM diagram in Figure 5.1
lists GPIO pin numbers, together with alternative pin functions such as
PWM0, I2C0, and SPI0 in parentheses. These represent alternative
roles a pin can perform beyond basic digital I/O.
Bus/Channel Numbers: For SPI and I2C interfacing and hardware
PWM, it's common for a library to use the bus or channel number. For
example, we can use BCM GPIO 18 as a general-purpose digital input
and output, or we can use it in its alternate function mode as a hardware
PWM output as PWM channel 0.

The pinout.xyz website is a great resource for exploring pin naming, alternative functions,
and scheme mappings.

You now have an understanding of the different schemes that can be used to
refer to GPIO pins on a Raspberry Pi. While the BCM scheme tends to be
the most common and universal amongst Python-based GPIO libraries, it is
imperative to never just assume that a GPIO library, code example, and even
a breadboard layout or schematic diagram you are working with uses the

https://pinout.xyz/


BCM scheme to reference GPIO pins. A mismatch between the scheme used
in code and the scheme used to physically wire electronics to the Raspberry
Pi's GPIO pins is a common mistake that causes a circuit not to work.

I often see people (and I've done the same!) blame their wiring or believe an electronic
component must be faulty when their circuit does not work with a code example they
found somewhere online. As a first step toward diagnosis, check that the pin numbering
scheme the code is using matches the scheme you used to wire the circuit to the
Raspberry Pi's GPIO pins.

Now that we understand the use and importance of different GPIO
numbering schemes, let's move on and review popular Python GPIO
libraries.

Exploring popular Python GPIO
libraries
If you are anything like me, when you first start with a Raspberry Pi, you
probably just want to control things. Today, for many developers, their first
point of contact with physical computing using a Raspberry Pi will be via
the official Raspberry Pi website and with the GPIOZero library. However,
after you've been tinkering with simple electronics such as buttons, LEDs,
and motors for a while, you'll want to undertake more complex interfacing.
If you've taken this step—or are about to—you may find yourself in the
somewhat confusing world of GPIO libraries and options. This section is
here to help you to navigate this path by presenting the more popular
options.

I maintain a summary and comparison table of Python GPIO libraries (including
additional libraries not listed in the following sections) at https://10xiot.com/gpio-comp-table.

We'll start our GPIO Library overview with GPIOZero.

Reviewing GPIOZero – simple interfacing for
beginners

https://10xiot.com/gpio-comp-table


The focus of the GPIOZero library is on simplicity, making it a no-fuss
library for beginners getting into physical computing and interfacing
electronics. It achieves ease-of-use by abstracting away the underlying
technical complexity and allows you to write code that deals with devices
and peripherals such as LEDs, buttons, and common sensors, rather than
writing lower-level code that directly manages pins.

Technically, GPIOZero is not actually a full-fledged GPIO library in terms
of how it interacts with GPIO pin hardware. It is a simplifying wrapper
around other GPIO libraries that are employed to do the actual GPIO grunt
work. In Chapter 2, Getting Started with Python and IoT, we saw a push
button and LED example in both GPIOZero and PiGPIO that illustrated this
point.

Here are the key highlights of GPIOZero in a nutshell:

Description: High-level GPIO Library designed for beginners
Pros: Easy to learn and use with excellent documentation and many
examples
Cons: Limited in scope for use beyond simple electronic interfacing
Website: https://gpiozero.readthedocs.io

Next, we will review RPi.GPIO, a popular low-level GPIO library.

Reviewing RPi.GPIO – a low-level GPIO for
beginners

We mentioned previously that the essence of GPIOZero is writing code that
deals with devices and components. Well, RPi.GPIO takes a different and
more classical approach where we write code that works with and manages
GPIO pins directly. RPi.GPIO is a popular low-level introduction to
Raspberry Pi and electronics, so you will find many examples using it across
the internet.

The GPIOZero documentation has a great section on RPi.GPIO, where it
explains equivalent code examples in both GPIOZero and RPi.GPIO. This is

https://gpiozero.readthedocs.io/


a great resource to start learning lower-level pin level programming
concepts.

There is also a library named RPIO that was created as a performance drop-
in replacement for RPi.GPIO. RPIO is not currently maintained and does not work with
the Raspberry Pi Model 3 or 4.

Here are the key highlights of RPI.GPIO in a nutshell:

Description: Lightweight low-level GPIO
Pros: Mature library with many code examples to be found on the
internet
Cons: Lightweight means that it is not a performance-orientated library
and there's no hardware-assisted PWM
Website: https://pypi.python.org/pypi/RPi.GPIO

Next, we will look at another high-level library designed for controlling
complex devices.

Reviewing Circuit Python and Blinka – interfacing
for complex devices

Blinka is a Python compatibility layer for Circuit Python (circuitpython.org), a
version of Python designed for microcontrollers. It's created and championed
by the electronics company Adafruit, which distributes many electronic
breakout boards and gadgets. Adafruit provides quality high-level Circuit
Python drivers for many of its product lines, essentially carrying forward the
GPIOZero ease-of-use idea to more complex devices.

We are going to use Blinka and the Circuit Python driver library for an
ADS1115 ADC breakout module later in this chapter to add analog-to-digital
capabilities to our Raspberry Pi.

Here are the key highlights of Blinka in a nutshell:

Summary: High-level library for controlling complex devices
Pros: Makes using supported devices extremely easy irrespective of
your level of experience

https://pypi.python.org/pypi/RPi.GPIO
http://circuitpython.org/


Cons: For basic IO, it uses RPi.GPIO, so it has the same basic
limitations
Website: https://pypi.org/project/Adafruit-Blinka

Next, we will cover Pi.GPIO, a powerful low-level GPIO library.

Reviewing PiGPIO – a low-level GPIO library

PiGPIO is considered one of the most complete GPIO library options for the
Raspberry Pi in terms of features and performance. Its core is implemented
in C, and there is an official port available for Python.

Architecturally, PiGPIO is comprised of two parts:

The pigpiod daemon service provides socket and pipe access to the
underlying PiGPIO C library.
The PiGPIO client libraries interact with the pigpiod service using
sockets or pipes. It's this design that makes Remote GPIO features over
a network possible with PiGPIO.

Here are the key highlights of PiGPIO in a nutshell:

Description: An advanced low-level GPIO library
Pros: Number of features available
Cons: Additional setup necessary; simple documentation assumes
knowledge of the underlying concepts
Website (Python Port): http://abyz.me.uk/rpi/pigpio/python.html

Before we move on to our next library, I want to draw your attention to a
feature that is unique to this library and is very useful—remote GPIO.

Exploring remote GPIO with PiGPIO (and GPIOZero)

Once you have started the pigpiod service on a Raspberry Pi (covered in Chap
ter 1, Setting Up Your Development Environment), there are two ways to
make your code remote, and by remote, I mean that your program code can

https://pypi.org/project/Adafruit-Blinka/
http://abyz.me.uk/rpi/pigpio/python.html


be running on any computer (not just a Raspberry Pi) and control a remote
Raspberry Pi's GPIOs.

Method 1: This method involves passing the remote Raspberry Pi's IP or
host address to the PiGPIO constructor. Using this approach, you can also
interface with multiple Raspberry Pi GPIOs by just creating additional
instances of pigpio.pi(). For instance, in the following example, any methods
called on the pi instance will be executed on the 192.168.0.4 host that has the
pigpiod service running:

# Python Code.

pi = pigpio.pi('192.168.0.4', 8888) # Remote host and port (8888 is default if 

omitted)

Method 2: A second method involves setting an environment variable on the
computer and running your Python code (your Python code just needs to use
the default PiGPIO constructor, pi = pigpio.pi()):

# In Terminal

(venv) $ PIGPIO_ADDR="192.168.0.4" PIGPIO_PORT=8888 python my_script.py

Remote GPIO can be a great development aid, but will add latency into your
code's interaction with GPIO pins as data is transmitted over the network.
This means it may not be desirable for non-development releases. Button
presses, as an example, can feel less responsive, and for use cases where fast
timing is important, remote GPIO may be impractical.

You may remember from Chapter 2, Getting Started with Python and IoT, that GPIOZero
can use a PiGPIO Pin Factory, and when it does, GPIOZero automatically gets remote
GPIO capabilities for free!

Finally, because it's a unique feature of the PiGPIO library, all of your code
must use this library if we want remote GPIO features. If you install third-
party Python libraries to drive an electronic device and it uses (for example)
RPi.GPIO, this device is not remote GPO-enabled.

Next, we will look at two common lower-level libraries for I2C and SPI
communication.



Reviewing SPIDev and SMBus – dedicated SPI
and I2C libraries

When working with I2C and SPI-enabled devices, you will encounter the
SPIDev and SMBus libraries (or comparable alternatives). SPIDev is a
popular lower-level Python library for use with SPI communications,
while SMBus2 is a popular lower-level Python library for use with I2C and
SMBus communication. These two libraries are not general-purpose libraries
—they cannot be used for basic digital I/O pin control.

When starting out, it is unlikely that you will want or need to use I2C or SPI
libraries such as these directly. Instead, you will use higher-level Python
libraries to work with an SPI- or I2C-enabled device that, underneath, would
be using lower-level libraries like these to communicate with the physical
device.

Here are the key highlights of SPIDev and SMBus2 in a nutshell:

Description: These are lower-level libraries for SPI and I2C
interfacing.
Pros: Using a lower-level library gives you full control over an SPI or
I2C device. Many high-level convenience wrappers only expose the
most commonly needed features.
Cons: Leveraging these lower-level libraries requires you to interpret
and understand how to interface with electronics using low-level data
protocols and bit manipulation techniques.
SPIDev website: https://pypi.org/project/spidev
SMBus2 website: https://pypi.org/project/smbus2

To complete this section on GPIO libraries, let me briefly discuss why this
book is primarily based around the PiGPIO library.

Why PiGPIO?

You may have wondered why, of all of the options, I chose to use
PiGPIO predominantly in this book. As a reader of this book, I'm assuming

https://pypi.org/project/spidev/
https://pypi.org/project/smbus2/


you have a good grounding in programming and technical concepts, and that
working with and learning a library such as PiGPIO is not beyond your
capabilities. PiGPIO is a comprehensive library if you are intending to
extend your learning beyond the basics offered by libraries such as
GPIOZero and RPi.GPIO and build more complex IoT projects in Python.

You will find the PiGPIO API and documentation is broken down into
beginner, intermediate, and advanced sections, so in practice and while
learning, you can mix and match how you use the library API depending on
your experience level and needs.

We have now completed our exploration of several popular GPIO libraries
and reviewed their basic architecture and design. Next, we will turn our
attention to alternative methods through which we can connect and control
electronics with our Raspberry Pi.

Exploring Raspberry Pi electronic
interfacing options
We've just covered the software side of GPIO, so now we will turn our
attention to the electronics side. The Raspberry Pi provides many standard
ways to interface both simple and complex electronics. Often, your choice of
electronic components and modules will dictate which interfacing technique
you need to use, while sometimes you may get a choice.

Irrespective of whether you have a choice, your knowledge of the different
options will help you to understand the how and why behind a circuit and its
accompanying code and help you to diagnose and resolve any issues you
may encounter.

In the following section, we will explore the concepts, followed by a
practical exercise. We'll start with digital IO.

Understanding digital IO



Each of the Raspberry Pi GPIO pins can perform digital input and output.
Digital simply means something is either fully on or fully off—there is no
middle ground. We've been working with simple digital IO in previous
chapters:

Our LED was either on or off.
Our button was either pressed (on) or non-pressed (off).

You will come across several interchangeable terms used to describe digital
states, including the following:

On = High = True = 1
Off = Low = False = 0

Digital IO is a form of basic IO. Analog IO is another, so we will explore it
next.

Understanding analog IO

Whereas digital deals with fully on and off states, analog deals with degrees
—on, off, or somewhere in-between. Think of a window in your house. In a
digital world, it could be fully open (digital high) or fully closed (digital
low); however, in reality, it's analog in that we can open it somewhere
between fully closed and fully open, for example, a quarter open.

Simple and common examples of analog electronic components include the
following:

Potentiometers (also known as pots): This is a dial or slider that
produces a range of resistance values. Real-world examples include
volume controls and header thermostat controls.
Light-Dependent-Resistors (LDRs): These are electronic components
to measure light levels, and you find these in automatic night lights.
Thermistors: These are electronic components for measuring
temperature that you might find in heaters, fridges, or anywhere where
temperature is measured.



The Raspberry Pi does not come with analog IO capabilities, so we need to
use external electronics known as an Analog-to-Digital-Converter (ADC)
to read analog input, and this will be a core focus of a practical example later
in this chapter in the section entitled Interfacing with an analog-to-digital
converter.

To output an analog signal, we have two options—either use a Digital-to-
Analog Converter (DAC) or use a digital technique known as PWM to
produce an analog-style signal from a digital output. We will not be covering
DACs in this book; however, we will be exploring PWM in depth, which we
will do next.

Understanding Pulse-Width Modulation

Pulse-Width Modulation or PWM is a technique to produce an average
voltage on a pin somewhere between fully on (high) and fully off (low) by
rapidly pulsing the pin on and off. In this way, it's a little like providing a
pseudo-analog output from a digital pin and is used for all sorts of control
applications, such as altering the brightness of LEDs, motor speed control,
and servo angle control.

PWM is defined by two main characteristics:

Duty cycle: The percentage of time the pin is high
Frequency: The time period during which the duty cycle repeats

As illustrated in Figure 5.2 (and for a set frequency), a 50% duty cycle
means the pin is high half of the time and low half of the time, while a 25%
duty cycle means the pin is high only 25% of the time. And while not
pictured, a 0% duty cycle would mean the pin is high 0% of the time (always
low), so it's effectively off, while a 100% duty cycle is always high:



Figure 5.2 – PWM duty cycles
The preceding diagram is taken from https://en.wikipedia.org/wiki/File:Duty_Cycle_Examples.png,
author, Thewrightstuff. It falls under CC BY-SA 4.0: https://creativecommons.org/licenses/by-sa/4.
0/deed.en.

Using PWM is easy on the Raspberry Pi, although there are alternative
approaches for creating the PWM signal, which we will look at next.

Creating PWM signals

Different GPIO libraries approach PWM signal generation in different ways.
Three common techniques are as follows:

Software PWM: The frequency and duty cycle timing of a PWM
signal are produced in code and can be made available on any GPIO
pin. This is the least accurate method of creating PWM signals because
the timing can be adversely affected by a busy Raspberry Pi CPU.
Hardware-timed PWM: The PWM timing is performed using DMA
and PWM/PCM hardware peripherals. It's highly accurate and is
available on any GPIO pin.
Hardware PWM: Hardware PWM is provided entirely via hardware
and is the most accurate method of creating PWM signals. The
Raspberry Pi has two dedicated hardware PWM channels, labeled

https://en.wikipedia.org/wiki/File:Duty_Cycle_Examples.png
https://creativecommons.org/licenses/by-sa/4.0/deed.en


PWM0 via GPIO pins 18 and 12 and PWM1 via GPIO pins 13 and 19
(refer to Figure 5.1).

It's not enough to just connect something to GPIOs 12, 13, 18, or 19 in order to get
hardware PWM. These GPIOs are the BCM GPIOs that have PWM listed as
their alternative functions. If you want to use hardware PWM, then two basic
requirements must be met. Firstly, the GPIO library you are using must provide support
for hardware PWM. Secondly, you must use the library and its hardware PWM
functionality correctly, which would be detained in the library API documentation. Pins
that share a common hardware PWM channel both get the same duty cycle and
frequency applied to them, so while there are four hardware PWM pins, there are only
two unique PWM signals.

Which PWM technique to use will always depend on what you are trying to
build and how accurate the PWM signal needs to be. Sometimes, you will
have direct control over which GPIO library (and hence PWM technique)
you use for your projects, while other times—especially when using third-
party higher-level Python libraries—you'll be forced to use whatever PWM
techniques the library developer used.

As a general rule, when I am in control of the GPIO library choice, I avoid
software PWM wherever possible. If I'm developing using PiGPIO, then I
favor hardware-timed PWM simply because I can use it on any GPIO pin.

In relation to the GPIO libraries that we covered earlier, their support for
PWM is as follows:

GPIOZero: Inherits the PWM method available from its Pin Factory
implementation
RPi.GPIO: Software PWM only
PiGPIO: Hardware-timed PWM and hardware PWM
Blinka: Hardware PWM only

You can attach external hardware PWM modules to your Raspberry Pi (usually by I2C)
that will give you more hardware PWM outputs.

Now that we've seen three ways that PWM signals can be created, we will
look next at SPI, I2C, and 1-wire interfaces.

Understanding SPI, I2C, and 1-wire interfaces



Serial Peripheral Interface Circuit (SPI), Inter-Integrated Circuit (I2C),
and 1-wire are standardized communication interfaces and protocols that
allow non-trivial electronics to communicate with each other. These
protocols can be employed either directly at a low level through a bit of
manipulation and math, or indirectly by using higher-level party Python
driver modules to work with electronic peripherals, with the latter being
more common for general use cases.

 Examples of devices that work through these protocols include the
following:

Analog-to-digital converters (SPI or I2C)
LED lighting strips and LCD displays (SPI or I2C)
Environmental sensors such as temperature sensors (1-wire)

We will explore I2C in more detail later in this chapter when we connect an
analog-to-digital converter to our Raspberry Pi.

Finally, we have serial communication and UART.

Understanding the serial / UART protocol

Universal Asynchronous Receiver/Transmitter (UART) is a serial
communication protocol that has been around for a very long time and in
common use before the prevalence of USB. UART actually refers to the
electronic hardware used to implement the serial protocol, although it can be
implemented in pure software.

Today, SPI or I2C tend to be used in preference to UART. GPS receivers are
a common example where serial communication still prevails. If you have
ever connected an Arduino to a PC for flashing or debugging, it's a serial
communication protocol that the devices are using, with UART hardware
being present in the Arduino.

We have now learned many of the standard ways that we can use to interface
electronics with our Raspberry Pi, including analog and digital electronics,
PWM, wire protocols such as I2C and SPI, and serial communication. We



will start to see many of these interfacing options in practice and get a feel
for what type of electronics use which type of interface as we proceed
through this book.

Next, we will see some of the concepts we have covered so far in this
chapter by adding an analog-to-digital converter to our Raspberry Pi.

Interfacing with an analog-to-
digital converter
Congratulations on getting this far. I suspect you're itching to get into some
code after all that reading!

We will change pace now and apply some of the knowledge we just covered
to add an ADS1115 analog-to-digital converter to your Raspberry Pi. An
example of a typical ADS1115 breakout module is pictured in Figure 5.3:

Figure 5.3 – ADS1115 breakout module

An ADC is a very handy addition because this alone opens you up to the
world of analog components and gadgets that are otherwise not usable with
the Raspberry Pi.



As part of this practical exercise, we are going to connect two
potentiometers (also known as pots) to the ADS1115 and read in their values
in Python. We will use these values to create a PWM signal by varying its
duty cycle and frequency. We'll see the effects of varying these parameters
by observing how it affects the LED and how the waveform changes in a
program called PiScope, which is a part of the PiGPIO family of utilities.

We'll revisit potentiometers in more detail in Chapter 6, Electronics 101 for the Software
Engineer.

To perform the following exercise, remember we need the electronic
components listed in the Technical requirements section at the start of this
chapter, including an ADS1115 breakout module. The ADS1115 is a
common and powerful analog-to-digital converter that connects to its master
(in our case, a Raspberry Pi) using I2C.

Here are the core specifications of the ADS1115 pulled from its datasheet
that we require for our exercise:

Working voltage: 2 to 5 volts (so we know it will work with the
Raspberry Pi's 3.3-volt logic)
Interface: I2C
Default I2C address: 0x48

The terminals on the ADS1115 are as follows:

Vcc & GND: Power for the device.
SCL: Clock signal, used to synchronize communication between the
master and slave.
SDA: Data signal, used to send data between the Raspberry Pi and the
ADS1115.
ADDR: This terminal can be used to change the default address if
required.
ALTR: Alert signal for advanced usage (we won't be needing this).
A0 - A3: Analog input channels (we will connect Pots to A0 and A1).

Make sure you have the I2C interface enabled on your Raspberry Pi before proceeding.
We covered the steps to enable interfaces, including I2C, in Chapter 1, Setting Up Your
Development Environment.



First, let's start by building the circuit we require on our breadboard.

Building the ADS1115 ADC circuit

Let's build our breadboard circuit for this chapter's exercise. We will build
our circuits in a series of steps, starting with placing the core components as
illustrated in the following diagram:





Figure 5.4 – Breadboard ADC circuit (part 1 of 3)
The overall arrangement and placement of discrete components and wires on a
breadboard are not overly important. However, the connections created between the
components and wires are vitally important! If you need a refresher on breadboards,
how they work, and, most importantly, how the holes are electrically connected, please
refer back to Chapter 2, Getting Started with Python and IoT.

Here is how to lay out the component on your breadboard. The following
step numbers match the numbered black circles in Figure 5.4:

1. Position the ADS1115 on your breadboard.
2. Position potentiometer VR1 on your breadboard. The illustrated

potentiometers are full-size potentiometers. If you have a different size,
their leg configuration may span fewer breadboard holes.

3. Position the potentiometer VR2 on your breadboard.
4. Position the resistor on your breadboard.
5. Position the LED on your breadboard, paying attention to ensure that

its cathode leg shares the same row as the resistor (illustrated at
holes D29 and E29).

Next, we wire up the ADS1115 as illustrated here:



Figure 5.5 – Breadboard ADC circuit (part 2 of 3)

Here are the steps to follow. This time, the following step numbers match the
numbered black circles in Figure 5.5:

1. Connect the Raspberry Pi +3.3 volt pin to the breadboard positive
power rail.

2. Connect the VDD terminal on the ADS1115 to the breadboard positive
power rail.

3. Connect the GND terminal on the ADS1115 to the breadboard negative
power rail.



4. Connect the Raspberry Pi GND pin to the breadboard negative power
rail.

5. Connect the SCL pin on your Raspberry Pi to the SCL terminal on the
ADS1115.

6. Connect the SDA pin on your Raspberry Pi to the SDA terminal on the
ADS1115.

Finally, we wire up the LED, resistor, and potentiometers, as illustrated in
the following diagram:



Figure 5.6 – Breadboard ADC circuit (part 3 of 3)

Here are the steps to follow. This time, the following step numbers match the
numbered black circles in Figure 5.6:

1. Connect the A0 terminal on the ADS1115 to the center leg of
potentiometer VR1.



2. Connect the A1 terminal on the ADS1115 to the center leg of
potentiometer VR2.

3. Connect the upper leg of potentiometer VR1 to the breadboard negative
power rail.

4. Connect the lower leg of potentiometer VR1 to the breadboard positive
power rail.

5. Connect the upper leg of potentiometer VR2 to the breadboard negative
power rail.

6. Connect the lower leg of potentiometer VR2 to the breadboard positive
power rail.

7. Connect the upper leg of the resistor to the breadboard negative power
rail.

8. Connect the anode leg of the LED to BCM GPIO 12 / PWM 0 on your
Raspberry Pi.

Well done! You have now completed this circuit. For your reference,
a semantic diagram depicting the breadboard circuit is shown in Figure 5.7.

As a reminder, we covered an example on how to read a semantic diagram back in Chapter
2, Getting Started with Python and IoT.

I encourage you to trace around this semantic diagram while referring back
to the breadboard layout to understand how the lines and labels on the
diagram relate back to the pictured components and wires on the breadboard.
Investing the time to understand how paired schematic diagrams and
breadboard circuits relate to one another will assist and increase your ability
to create breadboard layouts directly from a schematic diagram:



Figure 5.7 – ADC circuit semantic diagram

With the circuit complete, let's check that the ADS1115 can be seen by our
Raspberry Pi.

Making sure the ADS1115 is connected to your
Raspberry Pi

I2C devices are identified to their master (that is, our Raspberry Pi) by a
unique address, and the default address for the ADS1115 is 0x48. Since I2C
devices are addressed, multiple devices can share the same I2C channels
(pins) on a Raspberry Pi.

You can change the I2C devices on most IC2 devices if you have multiple devices
sharing the same address. This is the purpose of the ADDR terminal on the ADS1115,
and you can find instructions for its use in the ADS1115 datasheet.



Raspbian OS contains the i2cdetect utility that queries the Raspberry Pi's I2C
interface for connected devices. Run the following in a Terminal:

$ i2cdetect -y 1

The -y option assumes we answer yes to any prompts. 1 is the I2C bus
number. It's always 1 on the Raspberry Pi 3 or 4. We expect to see the output
like this:

     0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f

 00:          -- -- -- -- -- -- -- -- -- -- -- -- --

 10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

 20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

 30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

 40: -- -- -- -- -- -- -- -- 48 -- -- -- -- -- -- --

 50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

 60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

 70: -- -- -- -- -- -- -- --

The fact that we see 48 (hex address) is indicative that our Raspberry Pi has
detected the ADS1115. If you do not get this result, check your wiring and
make sure I2C has been enabled as described in Chapter 1, Setting Up Your
Development Environment.

Now that we have verified that our ADS1115 is visible to our Raspberry Pi,
let's proceed and read the two potentiometers as analog input.

Reading analog input with the ADS1115

Now that we have our ADS1115 connected to our Raspberry Pi, it's time to
learn how to use it to read in analog values, specifically the analog values
created by our two potentiometers. We will use these analog values shortly
to produce a PWM signal, which in turn will control the brightness of our
LED.

The code we are about to cover can be found in the file
chapter05/analog_input_ads1115.py. Please review this file before continuing.

1. Start by running the program in a Terminal:

(venv) $ python analog_input_ads1115.py



2. You should receive a stream of output similar to the following (your
value and volts numbers will be different):

 Frequency Pot (A0) value=3 volts=0.000 Duty Cycle Pot (A1) value= 9286 

volts=1.193

 Frequency Pot (A0) value=3 volts=0.000 Duty Cycle Pot (A1) value= 9286 

volts=1.193

 ...truncated...

3. Turn the two potentiometers and watch the output change—specifically,
you will notice the numbers reported for value and volts change. The
value and voltage will be in the following ranges:

value in the range 0 to 26294 (or thereabouts)
voltage in the range 0 to 3.3 volts (or thereabouts)

The output will be as follows:

 Frequency Pot (A0) value=3 volts=0.000 Duty Cycle Pot (A1) value= 9286 

volts=1.193

 Frequency Pot (A0) value=4 volts=0.001 Duty Cycle Pot (A1) value=26299 

volts=3.288

 ...truncated...

As we'll discuss more in Chapter 6, Electronics 101 for the Software Engineer,
analog input is about reading voltages, in our case here, between 0
volts/GND (our reference voltage) and +3.3 volts. The integer value is the
raw output of the ADS1115, and what its maximum value is will depend on
how the ADS1115 IC is configured (we're using the defaults). The voltage
value is derived from this raw value using math based on the ADS1115
configuration. All of the gooey details are in the ADS1115 datasheet and the
library source code if you are interested.

Beneath the surface of a high-level ADC library, many low-level settings influence how
the ADC chip works (just check its datasheet). Different library authors may implement
these settings differently or use different default settings. What this means in practice is
that two libraries for the same ADC might output different raw values (and some
libraries might not even provide this value to the programmer). So, never make
assumptions about what the expected raw output value will be, and instead rely on the
voltage measurement, which is always the source of truth.

As you adjust the two potentiometers, do not get worried if the exact ends of
these ranges do not marry up precisely to 0 and 3.3 volts, or if the values



randomly twitch a little. This fuzzy result is expected when we deal with
analog electronics.

Next, we will examine the code.

Understanding the code

Now that we have seen the basic operation of our ADS1115 ADC, it's time
to have a look at the accompanying code to understand how we query the
ADS1115 in Python to get analog readings. What we learn below will lay the
foundations for the analog interfacing programs that we will see in part 3 of
this book.

We will commence our code walk-through with the imports.

Imports

There are two ways we can use the ADS1115 with our Raspberry Pi with
Python:

Read the ADS1115 datasheet and use a lower-level I2C such as SMBus
to implement the data protocol used by the device.
Find a ready-made Python library available through PyPi that we can
install using pip.

There are several ready-made Python modules available to use with the
ADS1115. We are using the Adafruit Binka ADS11x5 ADC library that we
installed through requirement.txt at the start of this chapter:

import board                                      # (1)

import busio

import adafruit_ads1x15.ads1115 as ADS

from adafruit_ads1x15.analog_in import AnalogIn

Starting at line (1), we see the board and busio imports from Circuit Python
(Blinka), while the last two imports starting with adafruit are from the
Adafruit ADS11x5 ADC library and are used to configure the ADS1115
module and read its analog input, which we are going to look at next.



ADS1115 setup and configuration

At line (2) in the following code block, we use the busio import to create an
I2C interface with Circuit Python/Blika. The board.SLC and
board.SDA parameters indicate we are using the dedicated I2C channel
(alternative functions of GPIO 2 and 3) on the Raspberry Pi:

# Create the I2C bus & ADS object.

i2c = busio.I2C(board.SCL, board.SDA)      # (2)

ads = ADS.ADS1115(i2c)

Next, we create an instance of ADS.ADS1115 using the pre-configured I2C
interface and assign it to the ads variable. From this point forward in the
code, when we interact with our ADS1115 module, we will use this instance.

Next, let's consider the global variables.

Global variables

At line (3) in the following code snippet, we start with a few quasi-constants
defining the maximum and minimum voltages we expect to receive through
the analog input. When you ran the code previously, your end range voltages
probably were not exactly 0 and 3.3 volts. This occurrence is expected, and
it can make a program feel like the Pots do not reach the ends of their
rotation. The value assigned to A_IN_EDGE_ADJ is used to compensate for this in
code. We will revisit this variable in the next section:

A_IN_EDGE_ADJ = 0.002                     # (3)

MIN_A_IN_VOLTS = 0 + A_IN_EDGE_ADJ

MAX_A_IN_VOLTS = 3.3 - A_IN_EDGE_ADJ

Next, starting at line (4), we create two AnalogIn instances relating to the A0
and A1 inputs of the ADS1115 that are connected to our Pots. It's through
these variables that we determine how much a user has rotated our frequency
and duty cycle potentiometers:

frequency_ch = AnalogIn(ads, ADS.P0)  #ADS.P0 --> A0    # (4)

duty_cycle_ch = AnalogIn(ads, ADS.P1) #ADS.P1 --> A1



Next, we come to the program's entry point where we will read our analog
inputs.

Program entry point

Our program continuously loops, reading our analog input values for each
pot and prints formatted output to the Terminal.

At line (5), we see how to access the integer value from the frequency pot
using frequency_ch.value and the voltage value using frequency_ch.voltage:

if __name__ == '__main__':

   try:

       while True: 

           output = ("Frequency Pot (A0) value={:>5} volts={:>5.3f} "

                     "Duty Cycle Pot (A1) value={:>5} volts={:>5.3f}")

           output = output.format(frequency_ch.value,          # (5)

                                  frequency_ch.voltage,

                                  duty_cycle_ch.value,

                                  duty_cycle_ch.voltage)

           print(output)

           sleep(0.05)

   except KeyboardInterrupt:

       i2c.deinit()                                            # (6)

Finally, notice that the program is wrapped in a try/except block that will
capture Ctrl + C so that we can perform a clean-up using i2c.deinit().

Now that we have seen how to read analog input using our ADS1115, next,
we will integrate the LED.

Using PWM to control an LED

Now we will add the LED into the code, only we'll be doing this differently
to what we've done in previous chapters. The purpose of the LED for this
exercise is to visually see the effects of changing the duty cycle and
frequency characteristics of PWM. We will use the analog inputs of the two
Pots to define the PWM duty cycle and frequency.

The code we discuss in this section extends the analog code example we just
covered in chapter05/analog_input_ads1115.py to use PiGPIO to create a hardware
PWM signal.



Two additional source code files are provided with this book that implement
hardware-timed PWM using PiGPIO and software PWM using RPi.GPIO:

chapter05/pwm_hardware_timed.py

chapter05/pwm_software.py

Their overall code is similar, with the differences being the methods and
input parameters used to invoke PWM. We will revisit these files again in
the upcoming section, Visualizing software and hardware-timed PWM.

The code we are about to cover can be found in
the chapter05/pwm_hardware.py file. Please review this file before continuing:

1. Run the program in a Terminal and observe the output:

(venv) $ python pwm_hardware.py

Frequency 0Hz Duty Cycle 0%

... truncated ...

Frequency 58Hz Duty Cycle 0%

Frequency 59Hz Duty Cycle 0%

... truncated ...

2. Adjust the Pots until the frequency reads 60 Hz and the duty cycle reads
0%. The LED should not be lit. The LED is unlit because the duty cycle
is at 0%, so GPIO 12 (PWM0) is always low. Very slowly turn the duty
cycle Pot to increase the duty cycle and observe the LED slowly
increase in brightness. At a 100% duty cycle, GPIO 12 (PWM0) is
always high 100% of the time and the LED is at its full brightness.

If you are finding that the duty cycle printed on the Terminal does not reach 0% or 100%
at either end of the Pot's movement range, try increasing the value of A_IN_EDGE_ADJ in
your code (try +0.02 for starters). Also, tweak this adjustment if you experience a
similar issue with the frequency range and dial.

3. Rotate the duty cycle dial until it reads less than 100% (for example,
98%), and then adjust the frequency dial. The LED blinks on and off at
this frequency. As you lower the frequency toward zero, the LED blinks
slower. For most people, at around 50-60 Hz, the LED will be blinking
so fast that it appears to be just on. Remember that if the duty cycle is
0% or 100%, the frequency dial does not work! That's because at either
end of the duty cycle, the PWM signal is fully off or on—it's not
pulsing and hence frequency has no meaning.



Let's examine the code that makes this work.

Understanding the code

This example is using the hardware PWM features offered by PiGPIO. The
ADS1115-related code is the same as our previous example, so we will not
cover it again here. We'll start by looking at the additional global variables.

Global variables

At line (1) and (2) in the following code block, we define two variables for
the minimum and maximum duty cycle and frequency values. These values
come from the API documentation for the PiGPIO hardware_PWM() method,
which we will see in use shortly:

MIN_DUTY_CYCLE = 0            # (1)

MAX_DUTY_CYCLE = 1000000

MIN_FREQ = 0                  # (2)

MAX_FREQ = 60 # max 125000000

We have capped MAX_FREQ to 60 Hz for our demonstration so our human eyes
can observe the effects in the LED.

Next, we have a custom function to map value ranges.

Range mapping function

At line (3), we have a function named map_value():

def map_value(in_v, in_min, in_max, out_min, out_max):           # (3)

    """Helper method to map an input value (v_in)

       between alternative max/min ranges."""

     

    v = (in_v - in_min) * (out_max - out_min) / (in_max - in_min) + out_min

    if v < out_min: v = out_min elif v > out_max: v = out_max

    return v

The purpose of this method is to map an input range of values into another
range of values. For example, we use this function to map the analog input
voltage range 0-3.3 volts into a frequency range 0-60. You will frequently



use a value-mapping function like this when working with analog inputs to
map raw analog input values into more meaningful values for your code.

Next, we are ready to create the PWM signal.

Generating the PWM signal

This next code fragment is found in the main while loop.

At lines (4) and (5), we are reading in the voltage values from the frequency
and duty cycle Pots, before using the map_value() function to convert the
voltage range of 0-3.3 volts into our desired frequency and duty cycle ranges
we saw defined as global variables. Notice that we are also formatting the
duty cycles as a percentage value for display purposes:

frequency = int(map_value(frequency_ch.voltage,                # (4)

                          MIN_A_IN_VOLTS, MAX_A_IN_VOLTS,

                          MIN_FREQ, MAX_FREQ))

 

duty_cycle = int(map_value(duty_cycle_ch.voltage,              # (5)

                           MIN_A_IN_VOLTS, MAX_A_IN_VOLTS,

                           MIN_DUTY_CYCLE, MAX_DUTY_CYCLE))

 

duty_cycle_percent = int((duty_cycle/MAX_DUTY_CYCLE) * 100)

 

pi.hardware_PWM(LED_GPIO_PIN, frequency, duty_cycle)           # (6)

At line (6), we use pi.hardware_PWM() to use the Raspberry Pi's PWM hardware
to generate a PWM signal on the LED's pin.

Now that we have seen the effects of varying the frequency and duty cycles
on an LED, we will perform an exercise to visualize a PWM signal with a
logic analyzer.

Visually exploring PWM with PiScope

Let's do an exercise and see the PWM waveform in a logic analyzer, which
is a piece of equipment used to visualize electronic signals. While the
general principles behind PWM are technically simple, to aid learning when
starting out, it can be helpful to visualize what a PWM signal looks like and
observe how it changes visually as its duty cycle and frequency change.



PiGPIO contains a software logic analyzer we can use for this purpose. Now,
I need to point out that it's a basic software logic analyzer and in no way
compares to professional-grade equipment, however, for our example and
education, it will work a treat and cost us nothing.

Let's download, install, and run PiScope. Here are the steps to follow:

1. First, we must install PiScope. Run the following commands to
download, compile, and install PiScope:

# Download and install piscope

$ cd ~

$ wget abyz.me.uk/rpi/pigpio/piscope.tar

$ tar xvf piscope.tar

$ cd PISCOPE

$ make hf

$ make install

2. Run PiScope with the following command:

$ piscope

I'd recommend shutting down any resource-heavy applications before
starting PiScope and performing this exercise. The following
screenshots do not show all GPIOs like yours would by default
because I've turned some off via the menu Misc | GPIOs. If you, too,
turn off GPIOs from the display, remember to leave on SDA (GPIO
2) and/or SCL (GPIO 3) for this exercise as this creates a continuous
input signal for PiScope, which keeps the display moving in time.
Without this continuous input, PiScope pauses the display when there
is no signal input so our example will keep pausing the display at the
duty cycle or frequencies of 0, which will make the demonstration
feel clunky.

3. Make sure the chapter05/pwm_hardware.py program is running in a Terminal.

4. Slowly turn the duty cycle and frequency dials and observe how the
PWM signal changes on row number 12. Keeping our frequency range
very low (for example, 0 to 60 Hz) means we can observe the PWM
signal easily in the PiScope logic analyzer:



Figure 5.8 – 25% duty cycle at 10 Hz

The preceding screenshot shows a 25% duty cycle at 10 Hz. If you
examine the last row in the screenshot, you will notice that GPIO 12
is high for 25% of a single cycle and low for 75%. 

The following screenshot shows a 75% duty cycle at 10 Hz. If you
examine the last row in the screenshot, you will notice that GPIO 12
is high for 75% of a single cycle and low for 25%:



Figure 5.9 – 75% duty cycle at 10 Hz

We have now seen what a PWM signal waveform looks like visually using
PiScope, which is a free and basic software logic analyzer provided by the
developer of PiGPIO. Our primary purpose behind visualizing PWM signals
as an exercise was to provide a visual aid to help you to understand PWM
and its duty cycle and frequency properties.

In practice, when you are starting out and integrating with basic electronics,
you probably won't need a logic analyzer or even the need to visualize
signals. However, as you advance your knowledge and as you need to debug
electronic integration problems at the electronics level, I hope this basic
introduction to the use of logic analyzers proves useful and points you in the
right direction for further inquiries.



Next, we'll point you toward the Python source files that demonstrate
alternative PWM techniques.

Visualizing software and hardware-timed PWM

Our code examples from the previous sections, Using PWM to control an
LED, and Visually exploring PWM with PiScope, both created a PWM signal
using your Raspberry Pi's PWM hardware. Accompanying the code for this
chapter and listed in the following table are alternative implementations that
demonstrate the use of hardware-timed and software-generated PWM
signals. You may recall that we discussed these alternatives back in the
section entitled Creating PWM signals:

File Details

pwm_hardware.py

This is hardware PWM using PiGPIO (this is the
code we've seen in this chapter). You must use a
PWM hardware GPIO pin 12, 13, 18, or 19.

pwm_hardware_timed.py

This is a hardware-timed PWM using PiGPIO.
This will work with any GPIO pin.

pwm_software.py

This is software PWM using RPi.GPIO (PiGPIO
does not provide software PWM). This will work
with any GPIO pin.

 

Functionally, these examples are the same in that they will change your
LED's brightness, and I predict that you will find that hardware and software
PWM perform similarly. As you turn the frequency Pot's dial, the change to



the LED and PiScope will feel smooth, while the hardware-timed PWM will
feel a little chunky. This is because the hardware-timed frequencies (in
PiGPIO) must be 1 of 18 predetermined values so the frequency progression
as you adjust the pot is not incremental and linear, but instead jumps to/from
the next predefined frequency. You'll see these predefined frequencies in an
array in pwm_hardware-timed.py.

As mentioned previously, software PWM is the least reliable method of
producing PWM signals because it is susceptible to distortion if your
Raspberry Pi's CPU gets busy. 

You can try to create and visualize PWM distortion with these steps:

1. Run pwm_software.py and set the duty cycle to high (for example, 98%)
and the frequency to 60 Hz. Do not use a 100% duty cycle because this
is a fully-on state and you would visually get a horizontal line, not
repeating square waveforms.

2. Start a resource-intensive program on your Raspberry Pi—something
that will put a load on the CPU. For example, try closing and
relaunching the Chrome web browser.

3. If you closely observe the LED, it may flicker occasionally as the PWM
signal is distorted. Alternatively, you may be able to observe the
waveform distort in PiScope, as indicated by the arrows in the
following screenshot. You will notice the width of the bars is not
uniform when that the signal is distorting:

Figure 5.10 – Distortions in the PWM signal, 50% duty cycle at 50 Hz



Well done. You've just completed a detailed practical exercise using an
ADS1115 to extend your Raspberry Pi so that you can also interface it with
analog electronics. Along the way, you also learned how to produce a PWM
signal with Python, saw the effects of varying this signal on an LED, and
observed the signal visually with PiScope.

Summary
Well done on getting this far, as there has certainly been a lot to get our
heads around! As a recap, we explored common numbering schemes for
referencing GPIO pins and reviewed popular GPIO libraries for Python. We
also looked at the various interfacing methods used to connect electronics to
your Raspberry Pi and performed a practical exercise to add an ADC to your
Raspberry Pi and use it to visually explore PWM concepts with an LED and
the PiScope logic analyzer.

Your understanding of the fundamental concepts we explored and
experimented with during this chapter will help you to understand how your
Raspberry Pi interfaces to electronic components and devices and has
provided you with a first-hand appreciation of how we interact with analog
components (for instance, our potentiometers) and complex devices (that is,
our ADS1115). We will be using and building on many of these
fundamentals as we progress through the remainder of this book.

This chapter has been largely software library and code-focused. However,
in the next chapter, Electronics 101 for the Software Engineer, we will turn
our attention to electronic concepts and common circuits that are used to
interface electronics to a Raspberry Pi.

Questions
As we conclude, here is a list of questions for you to test your knowledge
regarding this chapter's material. You will find the answers in
the Assessments section of the book:



1. What serial communication interface allows devices to be daisy-
chained?

2. You have an I2C device but do not know its address. How can you find
it?

3. You have started using a new GPIO Python library for the first time but
can't seem to get any GPIO pins to work. What do you need to check?

4. You are using PiGPIO on Windows with Remote GPIO to drive a
remote Raspberry Pi. Now, you try to install a third-party device driver
library but it's failing to install under Windows However, you find it
installed successfully on the Raspberry Pi. What is the likely problem?

5. True or false: The Raspberry Pi has pins for both 3.3 volts and 5 volts,
so you can use either voltage when working with GPIO pins?

6. You have created a robot that uses servos. During simple testing,
everything seemed fine. However, now that you have finished, you
notice the servos randomly twitch. Why?

7. When the robot's servos move, you notice a lightning bolt icon on your
monitor or display is going blank. Why could this be happening?

Further reading
The GPIOZero website has a range of examples showing functionally
equivalent examples using both GPIOZero and RPi.GPIO. This is a great
introductory resource for understanding lower-level GPIO programming
concepts and techniques:

https://gpiozero.readthedocs.io/en/stable/migrating_from_rpigpio.html

The following links contain additional material concerning the interfaces and
concepts that we have discussed in this chapter:

SPI interface: https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
I2C interface: https://en.wikipedia.org/wiki/I%C2%B2C
1-wire interface:  https://en.wikipedia.org/wiki/1-Wire
PWM: https://en.wikipedia.org/wiki/Pulse-width_modulation
Potentiometers: https://en.wikipedia.org/wiki/Potentiometer
ADS1115 datasheet: http://www.ti.com/lit/gpn/ads1115

https://gpiozero.readthedocs.io/en/stable/migrating_from_rpigpio.html
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/1-Wire
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Potentiometer
http://www.ti.com/lit/gpn/ads1115


Electronics 101 for the Software
Engineer

So far in this book, we've focused mostly on software. In this chapter, we're
about to flip that and focus on electronics. We'll do this by learning about
the fundamental electronic concepts that are the basis for interfacing basic
electronic sensors and actuators with your Raspberry Pi. What we'll learn
about in this chapter will provide the foundation for many of the circuits
we'll discuss in Section 3, IoT Playground.

We will begin by covering the essential workshop tools that you will require
for working with electronics, and provide practical tips to help you purchase
electronic components. Next, we'll provide you with guidelines to help keep
your Raspberry Pi from being damaged as you work with its physical GPIO
pins. We will also discuss common ways electronic components fail to help
you diagnose circuits that do not work.

We will then get into the electronics! Here, we will look at two important
electronic laws – Ohm's Law and Kirchoff's Law – and work through a
practical example to explain why we used a 200Ω resistor to accompany our
LED in the circuits we were using in earlier chapters (if you need a refresher
about this LED circuit, please see Chapter 2, Getting Started with Python and
IoT).

Next, we will explore both digital and analog electronics and discuss the
core circuits and ideas that are used to integrate them with your Raspberry
Pi. We will finish this chapter by learning about logic-level conversion, a
practical technique that is used to interface electronics that operate at
different voltages.

The following topics will be covered in this chapter:

Fitting out your workshop
Keeping your Raspberry Pi safe
Three ways electronic components fail



Electronic interfacing principles for GPIO control

Exploring digital electronics
Exploring analog electronics
Understanding logic-level conversion

Technical requirements
To perform the exercises in this chapter, you will need the following:

Raspberry Pi 4 Model B
Raspbian OS Buster (with a desktop and recommended software)
Minimum Python version 3.5

These requirements are what the code examples in this book are based on.
The code examples should work without the need to modify a Raspberry Pi
3 Model B or use a different version of Raspbian OS, as long as your Python
version is 3.5 or higher.

You can find this chapter's source code in the chapter06 folder in this book's
GitHub repository: https://github.com/PacktPublishing/Practical-Python-Programming-
for-IoT.

You will need to execute the following commands in a Terminal to set up a
virtual environment and install the Python libraries required for this chapter:

$ cd chapter06              # Change into this chapter's folder

$ python3 -m venv venv      # Create Python Virtual Environment

$ source venv/bin/activate  # Activate Python Virtual Environment

(venv) $ pip install pip --upgrade        # Upgrade pip

(venv) $ pip install -r requirements.txt  # Install dependent packages

The following dependency is installed from requirements.txt:

PiGPIO: The PiGPIO GPIO library (https://pypi.org/project/pigpio)

The hardware components we will require for this chapter are as follows:

A digital multimeter.

https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://pypi.org/project/pigpio


A red LED (datasheet for reference – https://www.alldatasheet.com/datasheet
-pdf/pdf/41462/SANYO/SLP-9131C-81.html; click on the PDF option).
Momentary Push Button Switch (SPST).

200 Ω, 1k Ω, 2k Ω, and 51k Ω resistors.
10k Ω potentiometer
4-channel MOSFET-based logic level shifter/converter module. See
Figure 6.12 (left-hand side module) for an example.

Fitting out your workshop
Having the right tools and equipment is important to help you put together,
build, test, and diagnose problems in electronic circuits. Here are the bare
essentials (besides electronic components) you're going to need as you
journey deeper into electronics and create circuits like the ones shown in this
book:

Soldering iron: You will need a soldering iron (and solder) for odd jobs
such as joining header pins to breakout boards or soldering wires to
components so that they can be plugged into your breadboard.
Solder: Look for a general-purpose 60/40 (60% tin and 40% lead) resin
core solder with a diameter of around 0.5 mm to 0.7 mm.
Solder Sucker/Vacuum: We all make mistakes, so this device helps
you remove solder from a joint and undo your soldering work.
Wet Sponge or Rag: Always keep your soldering iron tip clean by
removing built-up solder – a clean tip promotes clean soldering.
Wire Stripper and Cutters: Keep a set of wire cutters and strippers
just for your electronics work. Chips and burrs in the cutter blades from
other uses will degrade their performance.
Digital Multi Meter (DMM): An entry-level DMM will be suitable for
general work and will include a range of standard features such as
voltage, current, and resistance measurements.
Breadboard: I highly recommend purchasing two full-size breadboards
and joining them together to get more breadboard real-estate. It'll make
working with the breadboard and components much easier.

https://www.alldatasheet.com/datasheet-pdf/pdf/41462/SANYO/SLP-9131C-81.html


Dupont (Jumper) Cables: These are the wires used with a breadboard.
They come in various types: male-male, male-female, and female-
female. You will need a mixture of them all.
Loose Header Pins: These are useful for joining Dupont cables
together and for making non-breadboard-friendly components
breadboard-friendly.
External Power Supply: This is so you can power circuits externally
from your Raspberry Pi. For the purposes of this book, at a minimum,
you will need a breadboard power supply that can supply 3.3 and 5
volts.

Raspberry Pi Case: Make sure you have a case for your Raspberry Pi.
A caseless Raspberry Pi with all those exposed electronics underneath
is an accident waiting to happen.
GPIO Breakout Header: This makes working with a Raspberry Pi and
breadboards much easier.

If you do not already have the aforementioned equipment, keep an eye out for
a soldering iron kit and a breadboard starter kit on sites such as eBay and Banggood.
These kits often come bundled with many of the items listed.

This list shows the basic tools that we require, but what about the actual
electronics and gadgets to play with? We'll look at that next.

Buying electronic modules and components

A catalogue of all the components and modules used throughout this book is
contained in the Appendix. In this section, I want to provide a few general
tips and guidelines to help you out when purchasing electronic components
in case you have not done much of this before. We will start with a few tips
to help you when purchasing loose components.

Purchasing lose components

When it comes to purchasing loose components such as resistors, LEDs,
push buttons, transistors, diodes, and other components (which we will be
exploring in Section 3, IoT Playground – Practical Examples to Interact



with the Physical World, of this book), there are some guidelines that will
help you out, as follows:

Source the specific component values and part numbers listed in the
Appendix. Purchase many spares since it's possible that you will
damage components while learning to use them.
If you're purchasing from sites such as eBay or Banggood, carefully
review the details of the item, and preferably zoom in on the images of
the parts and check the part numbers shown. Never rely solely on the
title of the listing. Many sellers add a variety of terms to their titles for
search optimization purposes that do not necessarily relate to the actual
item being sold.
Search around sites such as eBay and Banggood for terms such
as electronic starter kit. You may be able to pick up a mixed bundle of
loose components in one transaction.

These points also apply when purchasing sensors and modules, which we
will talk about next.

Purchasing open source hardware modules

I'm sure you are aware of open source software, but there is also open source
hardware. This is where the maker of some electronic hardware publishes
the design and schematics publicly so that anyone can make (and sell) the
hardware. You will find many breakout modules (such as the ADS1115
modules we used in Chapter 5, Connecting Your Raspberry Pi to the Physical
World) from various vendors with different (or no) branding. Different
vendors may also make their modules in different colors and, while less
common, different physical layouts.

The core or heart of a module – particularly the more simple ones – is often
a single integrated circuit (IC or chip). As long as the core IC and I/O pins
are similar, it's generally safe to assume that boards will operate the same
way.

SparkFun (https://www.sparkfun.com/) and Adafruit (http://adafruit.com/) are two
companies producing open source hardware that many others clone. A big

https://www.sparkfun.com/
http://adafruit.com/


advantage you will get when you purchase from these companies is that,
often, their products include code examples, tutorials, and tips on using their
products, and the products are of good quality. Yes, you may pay a little
more, but when starting out and especially for more complex electronics, the
investment can save you a lot of time. It's not uncommon to find that cheaper
clones arrive faulty – so you'll need to purchase two or more to hedge your
bets.

We have now covered some suggestions and tips to help you fit out your
workshop and buy electronic components. Having the right tools available
and learning how to use them (especially soldering, which will take practice
if this is a new skill) is essential to help make your electronics journey a
smooth and productive one. At times, purchasing loose components can be
confusing and sometimes error-prone, especially where subtle differences in
specifications or labeling can have dramatic practical implications, so be
diligent and double-check what you are buying if you are unsure. Finally, as
suggested in the Appendex, purchase spare components. It's no fun having to
abruptly stop your learning midway through a circuit build because a
component gets damaged and you need to source or wait for a replacement
to arrive!

Next, we will discuss guidelines to help you keep your Raspberry Pi safe
when interfacing electronics to it.

Keeping your Raspberry Pi safe
In this section, we will cover guidelines and suggestions to help keep your
Raspberry Pi safe while you are interfacing electronics with it. By being
careful and diligent in your approach, these guidelines will help you
minimize any potential for damage to your Raspberry Pi or electronics
components.

Don't worry if some of the electronic-orientated points such as voltages and
currents do not make sense at the moment. We'll be touching on these
concepts throughout this chapter, and during Section 3, IoT Playground –



Practical Examples to Interact with the Physical World, of this book, so
more context will be coming:

Never apply more than 3.3 volts to any input GPIO pin. Higher voltages
can cause damage.
Never use more than 8 mA from any single output GPIO pin (they can
handle up to ~16 mA, but by default, stick to 8 mA to ensure reliable
GPIO operation). As a rule of thumb, do not power anything other than
LEDs and breakout modules unless you know what you are doing. In Ch
apter 7, Turning Things On and Off, we'll look at circuits that can be
used to switch higher current and voltage loads.
Never use more than a combined 50 mA across multiple GPIO pins.
Never use more than 0.5 mA with a GPIO pin configured for input.
Always disconnect the power to your circuits before connecting or
disconnecting them to your Raspberry Pi or making any changes.
Always stop any running programs that are interacting with GPIO pins
before connecting, disconnecting, or working on a circuit.
Always double-check your wiring before applying power to your
circuits.
Never substitute random component values in a circuit – they don't have
the correct and expected value shown in the schematic diagram.
If you see a lightning bolt icon on your Raspberry Pi's monitor or the
monitor goes blank when you run your program, that's the Pi telling you
that your circuit is drawing too much power from the Raspberry Pi. 
Never directly connect and use inductive loads and mechanical devices
such as motors, relays, or solenoids that use magnates from GPIO pins.
They can draw too much current and cause a phenomenon known
as EMF flyback, which can damage surrounding electronics, including
your Raspberry Pi.

The power supply you have for your Raspberry Pi should ideally be 3 amps (15 watts).
Many phone chargers are rated less than this, and their use is a common reason for
seeing the lightning bolt icon (or a blank display) when interfacing simple electronics.

When working with electronics, from time to time, components do get
damaged or fail. Let's briefly look at ways this can occur.



Three ways electronic components
fail
Working with electronics is different from software. In the software world,
we can change code, break code, debug code, and fix code as many times as
we want with no real harm. We can also freely back up and restore states and
data. When working with electronics, we do not have this luxury. We're in
the physical world, and if something gets damaged, it's final!

Components and circuits made of components, including a Raspberry Pi, can
become damaged and fail in many different ways due to them being
connected incorrectly, oversupplying too much voltage, supplying or
sourcing too much current, overheating, and even mishandling delegate
components to the point that they physically break or are damaged by static
electricity from your body.

When a component fails, it can fail in a few different ways:

It fails in a puff of smoke, melts, or otherwise displays a physical sign
that it has been damaged.
It fails silently, with no visual indication of the failure.
It is damaged but continues to work more or less as expected, but then
sometime in the future, it just silently fails without warning.

Failing with a physical sign is the outcome we want because it's obvious
what failed and what needs to be replaced. It also gives us a starting point
where we can start diagnosing our circuits. Silent failures and delayed
failures are painful and time-consuming, especially when starting.

Here are some tips to help you build and debug faulty circuits when you're
starting:

Always double-check your circuits before applying power.
Have spare parts at hand. It's much easier to diagnose and test circuits if
you have known good parts you can substitute into the circuit.



If you deem something damaged, then bin it immediately. You don't
need faulty parts getting mixed up with good parts, especially when
there is no obvious sign of damage.

Next, we will discuss core electronic principles that govern why and how
components are chosen in a circuit and illustrate the concepts with our LED
circuit.

Electronics interfacing principles
for GPIO control
While this book is not a book on electronic theory, there are a few core
principles that are important to have an appreciation for because they impact
circuit design and how they interface with your Raspberry Pi. The goal of
this section is to present you with a basic understanding of why circuits are
designed in certain ways and how this relates to GPIO interfacing. Armed
with this basic knowledge, I hope it provides you with the incentive to
explore the core ideas and principles in more depth. You'll find suggested
resources in the Further reading section, at the end of this chapter.

We will start our coverage of electronic principles with what is arguably two
of the most fundamental electrical principles of them all – Ohm's Law and
power.

Ohm's Law and power

Ohm's Law is a fundamental electronics principle that explains how voltage,
resistance, and current relate to each other. Together with the principle of
power, these are core underlying principles that explain why certain value
components are chosen in circuits.

Ohm's Law is expressed as the following equation:



Here, V is voltage measured in volts, I (capital i) is the current measured in
amps, and R is resistance measured in Ohms, commonly prefixed with Ω, the
Greek symbol for Omega.

On the other hand, power is expressed as the following equation:

Here, P is power measured in Watts, I (capital i) is the current measured in
amps (same as in Ohm's Law), and R is resistance measured in Ohms (same
as in Ohm's Law).

The take-home principle regarding these equations is that you cannot change
a single parameter in an electronic circuit without affecting another. This
means that components are selected and arranged in a circuit to ensure that
the voltage, current, and power is proportioned appropriately for individual
components and the overall operation of the circuit.

If you are new to this world of electronics and this does not sink in straight
away, do not get disheartened! It does take time and practice. In addition to
Ohm's Law, we also have Kirchhoff's Law, which we will be talking about
next.

Kirchhoff's circuit laws

Kirchhoff's voltage and current laws are two laws that circuits abide by.
They are two laws essential to electrical engineering, and are stated as
follows:

The algebraic sum of all voltages in a loop must equal zero.
The algebraic sum of all currents entering and exiting a node must
equal zero.

That's about as deep as we're going to go on these laws. I have mentioned
these laws here because the voltage law is the one we will see in action in
the next section, when we calculate why we've been using a 200 Ohm
resistor in earlier chapters for our LED circuits.



With that, we have covered briefly three important electrical principles or
laws – Ohm's Law, power, and Kirchhoff's circuit laws. It's now time to put
these principles into practice. We will do this with an exercise to work out
why we have been using a 200Ω series resistor in our LED circuits.

Why are we using a 200 Ohm resistor for the LED
circuit?

So far in this book, our electronics have mostly evolved around LEDs. I
have done this for good reason. LEDs (and resistors) are easy to use
components and provide the basic building blocks for learning about
concepts such as Ohm's Law, power, and Kirchhoff's voltage law. Master the
basics of LED circuits and the calculations that lie behind them and you will
be well on your way to undertaking more complex components and circuits.

Let's go a little deeper with our LED and explore its data properties and see
the application of Ohm's Law, power, and Kirchhoff's voltage law. Through a
series of examples, we will work through a process to explain why the LED
circuits you've seen previously in this book are using a 200 Ohm resistor.

The following is a basic LED circuit, similar to what we have been using so
far in this book. If you need a refresher on this circuit, please revisit Chapter
2, Getting Started with Python and IoT:



Figure 6.1 – LED and resistor circuit

We have been using a typical 5 mm red LED. I've extracted part of its
typical technical specifications here. This distinction of typical and red is
emphasized because LED specifications do vary, depending on their color,
maximum luminosity, physical size, and manufacturer. Even LEDs from the
same batch vary.

Here are some of the core specifications relating to our referenced red LED
datasheet:

A Forward Voltage Drop (VF) between 1.7 and 2.8 volts, with the
typical drop being 2.1 volts. This is the voltage the LED needs to
illuminate. If there is not enough voltage in the circuit for the LED, it
will not illuminate. If there is more than it requires, that's okay – the
LED will just take what it needs.

A maximum continuous Forward Current (IF) of 25 mA. This is the
safe current required to illuminate the LED to its maximum brightness
when it's always on, which, for some LEDs, can be too bright for
comfort. Providing less current means the LED will be dimmer, while
providing more can damage the LED. For our LED and datasheet, when
pulsing the LED (for example, using PWM), the maximum current can
go up to (IFP) 100 mA.

What about power? LEDs are components that work on voltage and current.
If you look at the power equation ( ), you'll see that power is a
function of voltage (V) and current (I). As long as you are working within
the current ratings of the LED, you will be within its power tolerances.

If you do not have a matching datasheet for an LED (which is common when pushing in
small quantities), use a voltage drop of 2 volts and a reference amperage of 20 mA for
your calculations. You can also use a digital multimeter set to the diode setting to
measure the forward voltage for an LED. 

Let's move on and see how we arrive at the value for the R1 resistor.

Calculating the resistor value



In the preceding circuit diagram, we have the following parameters:

Supply voltage of 3.3 volts
LED typical forward voltage of 2.1 volts
LED current of 20 mA (test condition for mA is mentioned in the
datasheet for voltage drops)

Here is the process to calculate the resistor value:

1. Our resistor (labelled R1) needs to drop 1.2 volts, which is a simple
application of Kirchhoff's voltage law that we mentioned briefly
previously; that is, The algebraic sum of all voltages in a loop must
equal zero. So, if our source voltage is +3.3 volts and the LED drops
2.1 volts, then the resistor must drop 1.2 volts. This means we get the
following equation:

+3.3V + -2.1V + -1.2V = 0V

2. We can arrange Ohm's Law algebraically so that we get the following:

3. Using this formula, we calculate our resistor's value:

= 60Ω (hence, resistor R1 in the preceding circuit is 60Ω)

But this is not 200Ω. Our example so far is a simple LED and resistor circuit
connected to a 3.3 volt supply, not a Raspberry Pi. There's more to consider
because we need to respect the current limitations of the Raspberry Pi's
GPIO pins, which we'll do next.

Factoring in the Raspberry Pi's current limits



The maximum current we can safely use with a GPIO pin configured for
output is 16 mA. However, there is a configurable aspect of GPIO pins,
which means that, by default, we should not use more than 8 mA per GPIO.
This limit can be configured so that it goes up to 16 mA, but this is beyond
our scope. Ideally, we want to be moving toward external circuits when more
current is needed rather than pushing the pins higher and higher. We will
learn how to do this in Chapter 7, Turning Things On and Off.

While we want to limit a single GPIO output pin to 8 mA, we should not exceed a
combined total of ~50 mA over multiple GPIO pins. When it comes to GPIO input pins,
we should limit the current to 0.5 mA for safe operation when connecting an external
input device or component. Connecting an input GPIO pin directly to the Raspberry Pi's
+3.3 V or GND pin is fine as the measured current is approximately 70 microamps.
(We'll learn how to measure current with a multimeter in Chapter 7, Turning Things On and
Off.)

Let's modify our calculation and continue with this process:

1. If we cap the current to 8 mA, we can use our previous equation to
arrive at the value for R1:

R1 = 150Ω

2. A resistor's rated value is never expected to be exact. They have a value
tolerance, and if our physical resistor was less than 150Ω, according to
Ohm's Law, we'd increase the current in the circuit and exceed the 8
milliamp limit.

Due to this, we will choose a slightly higher value. This might be as
simple as using a rule of thumb, such as selecting a standard resistor
value 2 values higher than 150Ω, or multiplying 150Ω by our
resistor's tolerance and selecting the next highest standard value.
Let's use the latter approach, assuming our resistor's tolerance is
±20% (which, by the way, would be a very poor quality resistor. 5%
and 10% is more common):

150Ω x 1.2 = 180Ω



180Ω just happens to be a standard resistor value, so we can use it, but I
don't have one (and you'll often find that you don't have the exact resistor
values you want after calculations either!). However, I do have a supply of
200Ω resistors, so I will just use one of these.

For prototyping and tinkering, any resistor from 180Ω up to about 1kΩ will
be more than adequate for our circuit. Just remember that as you increase the
resistor's value, you limit the current, so the LED will be dimmer.

But what about the power going through the resistor and its power rating?
We'll calculate that next.

Calculating the resistor's power dissipation

General-purpose resistors like the ones we're using in our breadboards are
commonly rated to be 1/8 Watt, 1/4 Watt, or 1/2 Watt. If you supply too
much power to a resistor, it will burn out with a puff of smoke and give off a
horrible smell.

Here is how we calculate the power dissipation of our 200Ω resistor when
we have a 3.3-volt power source:

1. The power dissipated by a resistor can be calculated with the following
formula. Note that the voltage V is the voltage drop across the resistor
in volts, while R is the resistance in Ohms:

2. Therefore, when we substitute our resistor's voltage drop and resistance
value in the formula, we get the following:

= 0.0072 Watts, or 7.2 milliwatts (or mW)



3. Our power value of 7.2 mW is below even a 0.25 Watt-rated resistor, so
a 1/8 Watt or above resistor is safe in our circuits and will not burn out
in a puff of smoke.

If you think the power equation looks different from the one you saw earlier,
you're right. This is the power equation rewritten to use voltage and
resistance. Here's a handy diagram that I'm sure you will see during your
electronics journey that expresses Ohm's Law and power in different ways:

Figure 6.2 – Ohm's Law power wheel

I'll leave you with a final tip about LEDs, and something to think about.

It's the current that alters the LED's brightness. The 25 mA value from the datasheet is
the maximum continuous safe current to drive the LED to its maximum brightness. Less
current is fine; it just means the LED will be dimmer.



Hang on a minute – in Chapter 5, Connecting Your Raspberry Pi to the
Physical World, we used PWM, which is a pseudo-analog voltage used to
change the brightness of the LED. Pause and think about this for a minute…
what's going on? It's simply an application of Ohm's Law. In our circuit, our
resistor was fixed at 200Ω. Hence, by varying the voltage, we also vary the
current and hence the brightness of the LED.

What do you think? Rest assured that's as complex as the math will get in
this book. I do, however, encourage you to repeat these exercises until you
are comfortable with the process. Understanding the basics of electronics
(and the calculations that go with it) is the difference between a hobbyist
who just guesses at components using trial and error until a circuit works
and an engineer who can actually build what they need.

Next, we will explore core concepts related to digital electronics.

Exploring digital electronics
Digital I/O essentially means detecting or making a GPIO pin high or low. In
this section, we will explore core concepts and see some examples of digital
I/O in operation. We'll then talk about how this relates to your Raspberry Pi
and any digital electronic components you will interface with it. We will
start or digital I/O journey by looking at and playing with digital output.

Digital output

In simple electrical terms for our Raspberry Pi, when we drive a GPIO pin
high, its voltage measures ~3.3 volts, and when we drive it low, it measures
~0 volts.

Let's observe this using a multimeter:

Different multimeters may have different connections and labeling than the multimeter
illustrated here. Consult your multimeter's manual if you are unsure how to set it up for
measuring voltage.



1. Set your multimeter to its voltage setting and attach it to GPIO 21 and
GND, as shown in the following diagram:



Figure 6.3 – Connecting a multimeter to a GPIO pin



2. Run the following code, which you can find in the
chapter06/digital_output_test.py file. You will notice that the meter toggles
between about 0 volts and about 3.3 volts. I say about because nothing
is ever really perfect or precise in electronics; there are always
tolerances. Here's a synopsis of the code:

# ... truncated ...

GPIO_PIN = 21

pi = pigpio.pi()

pi.set_mode(GPIO_PIN, pigpio.OUTPUT)           # (1)

try:

    while True:                                # (2)

        # Alternate between HIGH and LOW

        state = pi.read(GPIO_PIN); # 1 or 0

        new_state = (int)(not state) # 1 or 0

        pi.write(GPIO_PIN, new_state);

        print("GPIO {} is {}".format(GPIO_PIN, new_state))

        sleep(3)

# ... truncated ...

On line 1, we configured GPIO 21 as an output pin, while on line 2,
we started a while loop that alternates the state of GPIO 21 between
high and low (that is, 0 and 1) with a 3-second delay in between each
state transition.

As you may have noticed, digital output on our Raspberry Pi is that simple –
high or low. Now, let's consider digital input.

Digital input

Generally, when we think about digital input and voltages for a 3.3-volt
device such as the Raspberry Pi, we think of connecting a pin to the ground
(0 volts) to drive it low or connect it to 3.3 volts to make it high. In most
applications, this is exactly what we will strive to do. However, in truth,
there is more to this story because GPIO pins don't just operate at two
discrete voltage levels. Instead, they work within a range of voltages that
define an input pin as being high and low. This applies to the Raspberry Pi
and similar computers with GPIOs, microcontrollers, ICs, and breakout
boards.



Consider the following diagram, which shows a voltage continuum between
0 and 3.3 volts, as well as three highlighted areas labeled low, floating, and
high:

Figure 6.4 – Digital input trigger voltages

This illustration is telling us that if we apply a voltage between 2.0 volts and
3.3 volts, then the input pin will read as a digital high. Alternatively, if we
apply a voltage between 0.8 volts and 0 volts, the pin will read as a digital
low. Anything beyond these ranges is a danger zone and you'll likely damage
your Raspberry Pi. While you probably won't be accidentally applying a
negative voltage to a pin, there is a real risk of accidentally applying more
than 3.3 volts to a pin since it is common to be working with 5-volt digital
circuits.



So, what about that gray area in the middle? Are we digital high or digital
low? The answer is that we do not know and can never reliably know. In this
range, the pin is said to be floating.

Let's see the effects of a floating pin. We'll start by creating the following
circuit on our breadboard:

Figure 6.5 – Push button circuit

Here are the steps for this. The step numbers here match the numbered black
circles shown in the preceding diagram:



1. Position the push button on your breadboard.
2. Connect one leg of the push button to a GND pin on your Raspberry Pi.

In the diagram, we are connecting the lowermost leg of the push button
(shown at hole E4).

3. Finally, connect the other leg of the push button (in the diagram, this is
the uppermost leg, shown at hole E2) to GPIO 21 on your Rasberry Pi.

With your circuit build now complete, let's test the circuit and see what
happens:

1. Run the following code, which can be found in the
chapter06/digital_input_test.py file:

# ... truncated...

GPIO_PIN = 21

pi = pigpio.pi()

pi.set_mode(GPIO_PIN, pigpio.INPUT)   # (1)

# ... truncated...

try:

   while True:                        # (2)

   state = pi.read(GPIO_PIN)

   print("GPIO {} is {}".format(GPIO_PIN, state))

   sleep(0.02)

except KeyboardInterrupt:

   print("Bye")

   pi.stop() # PiGPIO cleanup.

This code configures GPIO21 as input on line (1). On line (2), using
a while loop, we rapidly read in the GPIO pin's value (1 or 0) and
print it to the Terminal.

2. Touch the wires on the breadboard with your fingers, as well as any
exposed metal contacts surrounding the switches. The wires and
contacts act like an antenna picking up electrical noise, and you should
see the Terminal output fluctuating between high (1) and low (0) – this
is a floating pin. This also illustrates a common misconception that a
GPIO pin configured for input and connected to nothing is always low
by default.

If your initial thoughts were along the lines of "Wow! I can create a touch
switch because of this," then sorry; you'll be disappointed – it's just not
reliable, at least not without additional electronics.



Next, we will look at two common ways to avoid floating pins.

Using pull-up and pull-down resistors

When a pin is not connected to anything, it's said to be floating. As shown in
the preceding example, it floats around, picking up electrical noise around it
from other nearby components, wires connected to it, and charges coming
from yourself.

Referring again to the preceding diagram, when the button is pressed, the
circuit completes and GPIO 21 gets connected to the ground, and hence we
can say for certain that the pin is low. And as we just saw when the button is
not pressed, GPIO 21 is floating – it can fluctuate between high and low due
to external noise.

This needs to be rectified, and we can do this two ways – with a resistor or in
code.

The resistor solution

If we add an external resistor to the circuit, as shown in the following
diagram, then we'll introduce what is called a pull-up resistor, which serves
the purpose of pulling (meaning connecting) GPIO pin 21 up (meaning
connected to a positive voltage) to 3.3 volts:



Figure 6.6 – Push button circuit with a pull-up resistor

Here are the steps to create this circuit on your breadboard. The step
numbers here match the numbered black circles shown in the preceding
diagram:

1. Place the push button on your breadboard.
2. Place the resistor (with a value between 50kΩ to 65kΩ ) on your

breadboard. One end of the resistor shares the same row (shown at
hole B5) as the upper positioned leg of the push button. The other end
of the resistor is placed on an empty row.

3. Connect the other end of the resistor to a 3.3-volt pin on your Raspberry
Pi.

4. Connect the lower leg of the push button to a GND pin on your
Raspberry Pi.



5. Finally, connect the row shared by the upper leg of the push button and
lower leg of the resistor (shown at hold D5) to GPIO 21 on your
Raspberry Pi.

Now that you have created the circuit, here is a brief description of how it
works:

When the button is not pressed, the resistor pulls GPIO 21 up to the
3.3-volt pin. Current flows along this path and the pin will read as a
guaranteed digital high.

When the button is pressed, the segment of the circuit connecting GPIO
21 to the ground is created. Because more current flows in this path
since it has less (near-zero) resistance, the GPIO pin is connected to the
ground, and thus will read as low.

Run the same code in chapter06/digital_input_test.py, only this time, when you
touch the wires, the output should not fluctuate.

If your circuit does not work and your wiring is correct, try rotating your push button 90
degrees on the breadboard.

Why is a 50kΩ to 65kΩ  resistor being used in the preceding diagram? Read
on – we'll find out why when we look at a code-based alternative to using
our own physical resistors.

The code solution

We can solve our floating pin situation in code by telling our Raspberry Pi to
activate and connect an embedded pull-up resistor to GPIO 21, which,
according to the Raspberry PI's documentation, will be within the range
50kΩ-65kΩ, hence why we stipulated that range in the circuit shown in the
previous diagram.

The following diagram shows a circuit similar to the one shown in the
preceding diagram, but without the physical resistor in the external circuit.
I've added a resistor inside the Raspberry Pi diagram to illustrate the fact that



there is a physical resistor hiding away somewhere in the Raspberry Pi's
circuitry, even though we can't see it:

Figure 6.7 – Push button circuit using an embedded pull-up resistor

Let's enable a pull-up resistor in code and test this circuit. Here are the steps
for you to follow:

1. This example uses the push button circuit shown previously in Figure
6.5. Please recreate this circuit on your breadboard before continuing.

2. Next, edit the chapter06/digital_input_test.py file to enable an internal
pull-up resistor, as follows:

#pi.set_pull_up_down(GPIO_PIN, pigpio.PUD_OFF) <<< COMMENT OUT THIS LINE

pi.set_pull_up_down(GPIO_PIN, pigpio.PUD_UP)   <<< ENABLE THIS LINE

3. Run the chapter06/digital_input_test.py file again. As you press the button,
you should see the high/low (0/1) values changing on the Terminal;
however, touching the wires or Terminals of the button should not cause
any interference.

When reading through the preceding code and observing the Terminal
output, if the fact that the Terminal prints 1 when the button is not
pressed and 0 when it is pressed (that is, button pressed = pin low) seems a
bit back to front in a programming sense, then you are right…and wrong. It's
because you're looking at the circuit as a programmer. I've done this on



purpose because it is a configuration you will see often. This is known as
active low, which means the button is active (pressed) when the pin is low.

The opposite resistor setup is also possible and equally valid. That is, you
can design the circuit with GPIO 21 pulled to the ground by default, in
which case we are employing a pull-down resistor, whether it be a physical
resistor or an embedded one activated in code. In this scenario, you will then
see that when the button is pressed, the pin reads 1 (high), and it may feel
more comfortable in code!

As an exercise, try to change the circuit and code so that it's pull-down by
default.

When reading a digital input circuit, you need to read the circuit in combination with the
code that accompanies it, or in respect to the code you will write. Overlooking how pull-
up or pull-down resistors are used can be the basis for seemingly simple digital input
circuits not working.

Now that we understand we can have physical and code-activated pull-up
and pull-down resistors, can we say that one approach is better than the
other? The short answer is, yes, sometimes...external resistors do have an
advantage.

The advantage of an external pull-up or pull-down resistor is that they are
always present. Code-activated pull-up and pull-downs are only present if
two conditions are met:

Your Raspberry Pi is powered on.
You have run the code that activates the pull-up or pull-down. Until this
happens, the pin is floating! We will look at an application where we
prefer an external pull-down resistor in Chapter 7, Turning Things On
and Off.

This is not to say that code-activated pull-up and pull-down resistors are
inferior, it just means you need to consider the impact of a floating pin for
your circuit when your Raspberry Pi is off or you are not running code.

We have now covered the basics of digital input and output, which, in many
ways, are the backbone of electronic interfacing. We also learned that there



is more going on with digital input than simply a high/on or low/off state in
that threshold voltage levels actually determine what voltage level is
considered a digital high or a digital low for your Raspberry Pi. In addition
to this, we also learned that it is necessary to appropriately employ a pull-up
or pull-down resistor when dealing with digital input so that the input circuit
is reliable and predictable – that is, it's not floating.

Your understanding of digital I/O will be beneficial to you when designing
predictable digital input circuits (floating pins and missing or incorrectly
used pull-up or down-down resistors are common sources of errors when
starting out!). Furthermore, your understanding of threshold digital high/low
voltage levels will be valuable when you are integrating with non-Raspberry
Pi devices and electronics. We'll pick up on this digital voltage theme again
later in this chapter, in the Logic-level conversion section.

Now, let's move on from digital and explore analog electronics.

Exploring analog electronics
As we saw in the previous section, digital I/O is all about discrete highs or
lows, as determined by voltage. Analog I/O, on the other hand, is all about
degrees of voltage. In this section, we will explore some core concepts and
look at examples of analog I/O in operation.

Analog output

In Chapter 5, Connecting Your Raspberry Pi to the Physical World, we
discussed that by using PWM on a digital output pin, we can create a
pseudo-analog output or the appearance of a variable output voltage.
Furthermore, we also saw PWM in use back in Chapter 3, Networking with
RESTful APIs and Web Sockets Using Flask, when we used this concept to
control the brightness of an LED.

In this section, we'll explore the idea underlying PWM just a little further
with a short exercise. Our example is similar to the one we performed for



digital output previously, only this time, we are using PWM to produce a
varying voltage on a GPIO pin. Here are the steps we need to follow:

1. Connect your multimeter to your Raspberry Pi as we did for digital
output in Figure 6.3.

2. Run the following code, which you can find in the
chapter06/analog_pwm_output_test.py file.

3. As the code runs, your multimeter will step through a range of different
voltages. They won't be exact, as per the Terminal screen output shown
here, but should be reasonably close enough to illustrate the intent:

(venv) $ analog_pwm_output_test.py

Duty Cycle 0%, estimated voltage 0.0 volts

Duty Cycle 25%, estimated voltage 0.825 volts

Duty Cycle 50%, estimated voltage 1.65 volts

Duty Cycle 75%, estimated voltage 2.475 volts

Duty Cycle 100%, estimated voltage 3.3 volts

Let's have a look at the code, which is partly replicated here.

It is using PiGPIO's hardware-timed PWM, which is configured on line 1,
while a set of duty cycle percentages are defined on line 2. These are the
duty cycle values that our code will step through on line 3. It's on line 4 that
we set the duty cycle for GPIO 21 before sleeping for 5 seconds so that you
can read the value on the Terminal and your multimeter:

# ... truncated ...

pi.set_PWM_frequency(GPIO_PIN, 8000)                       # (1)

duty_cycle_percentages = [0, 25, 50, 75, 100]              # (2)

max_voltage = 3.3

try:

    while True:                                  

       for duty_cycle_pc in duty_cycle_percentages:        # (3)

           duty_cycle = int(255 * duty_cycle_pc / 100)

           estimated_voltage = max_voltage * duty_cycle_pc / 100

           print("Duty Cycle {}%, estimated voltage {} volts"

                 .format(duty_cycle_pc, estimated_voltage))

           pi.set_PWM_dutycycle(GPIO_PIN, duty_cycle)      # (4)

           sleep(5)

# ... truncated ...

If you ever need to provide a more true form analog output from your
Raspberry Pi, then you might like to explore how you can use a Digital-to-
Analog Converter (DAC). They will typically interface via I2C or SPI, and



you will control them via a driver library similar to the ADS1115 ADC, only
you'll be outputting a varying voltage rather than reading one.

Now that we've discussed analog output and seen a simple example of how
to create one using PWM, next, we will look at the input side of analog
electronics.

Analog input

In Chapter 5, Connecting Your Raspberry Pi to the Physical World, we learned
how to use the ADS1115 ADC breakout module, and that analog input is all
about measuring a voltage from within a predefined range, which, for our
purposes, is between 0 volts and 3.3 volts. While in digital I/O, we'd say 0
volts measured on a pin means low and 3.3 means high, in analog I/O, there
are no concepts of high or low in this regard.

Many simple analog components and sensors operate on the principle that
their resistance changes in accordance with what they measure. For example,
a light dependent resistor, or LDR, changes its resistance in proportion to
the light it detects. However, analog input is all about measuring voltage. To
turn a varying resistance into a varying voltage, we use a voltage divider
circuit.

Voltage dividers

The following diagram shows a simple two-resistor voltage divider circuit.
Our resistor values are fixed for this example to illustrate the basic principle.
Notice that we've used 5 volts in this example. The reason for this will be
revealed shortly when we cover logic-level conversion:



Figure 6.8 – Measuring voltages across a voltage divider

It's a principle of electronics and resistors that voltage is dropped across
series resistors in proportion to their resistance. In the preceding circuit, R1
is twice as high as R2, so it drops twice as much voltage. Here is the basic
formula, as applied to the preceding circuit (it's actually the application of
Kirchhoff's Law and Ohm's Law again):

Vout = 5 volts x 2000Ω / (1000Ω + 2000Ω)
Vout = 3.33333 volts

We'll see the application of voltage dividers in Section 3, IoT Playground –
Practical Examples to Interact with the Physical World, but for now, to see
this principle in practice and to help cement the concept, apply a digital
multimeter across the points marked in the preceding diagram to verify that
the measured voltages are close to what's indicated; that is ~1.6 volts across
R1 (points A and B in the preceding diagram) and ~3.3 volts across R2
(points B and C). The measurement across R2 (points B and C) is the Vout in
the preceding equation.

What about the choice of resistor values? For a voltage divider, the most
important part of the resistor value's choices is their relative ratios to divide
the voltage in a way we want. Beyond that, it comes down to current flow



and resistor power ratings – again, these are applications of Ohm's Law and
power.

Remember the potentiometers in Chapter 5, Connecting Your Raspberry Pi to
the Physical World? They're actually voltage dividers! We had the middle
wiper connected to AIN1 and AIN2 of the ADS1115 and when you turned
the dial on the potentiometer, what you were doing was changing the
resistance across Terminals A and B relative to the center wiper, thus
creating the variable voltage that's read by the ADS1115.

The following diagram shows how a potentiometer relates to a semantic
diagram. Points A, B, and C are comparable to those indicated in the
preceding circuit:

Figure 6.9 – A potentiometer is a voltage divider

Let's perform an experiment to see how a potentiometer acts as a voltage
divider by creating the circuit shown here:



Figure 6.10 – A potentiometer circuit

Here are the first set of steps to follow. The step numbers here match the
numbered black circles shown in the preceding diagram:

1. Place the 10kΩ potentiometer on your breadboard. You'll notice that I
have marked Terminals A, B, and C so that they match the labeling
shown in Figure 6.9.

2. Connect an outer Terminal (labeled A) of the potentiometer to a 3.3-
volt pin on your Raspberry Pi. In this circuit, we are only using our
Raspberry Pi as a power source. You could use an external power
supply or a battery if you desired.

3. Connect the alternate outer Terminal (labeled C) of the potentiometer to
a Raspberry Pi GND pin.



4. Connect the voltage measuring lead from your multimeter to the middle
Terminal (labeled B) of the potentiometer. 

5. Connect the com Terminal of your multimeter to GND (which, in our
example, is shared by the potentiometer Terminal labeled C).

6. Turn your multimeter on and select its voltage mode.

Now, with your multimeter on, turn the potentiometer's dial and observe the
voltage reading on your multimeter change within the range of ~0 volts and
~3.3 volts.

This now concludes our introduction to analog electronics. We performed a
simple exercise to demonstrate and visualize, with a multimeter, how PWM
produces a variable output voltage. We also learned about voltage dividers,
how they work, and why they are a crucial part of any analog input circuit.
We finished by revisiting potentiometers once more and looking at how they
work as varying voltage dividers.

These analog concepts, while relatively short and simple, are two core
principles underlying analog circuits that every electronic engineer –
whether you are a professional or a hobbyist – needs to understand. These
concepts – especially voltage dividers – will feature in many circuits in
upcoming chapters (we will be using them in conjunction with an ADS1115
analog-to-digital converter), so please play around with the preceding
examples and principles to ensure you grasp the basics!

Next, we will discuss logic-level conversion and look at another practical
application of voltage dividers, only this time in the digital input space.

Understanding logic-level
conversion
There will be occasions when you need to interface with 5-volt devices from
your Raspberry Pi's 3.3-volt GPIO pins. This interfacing may be for the
purpose of GPIO input, output, or bi-directional I/O. The technique used to



convert between logic-level voltages is known as logic-level conversion or
logic-level shifting.

There are a variety of techniques that can be used to shift voltages, and we
will cover two of the more common ones in this section. One uses a voltage
divider circuit, which we discussed under the previous heading, while the
other uses a dedicated logic-level shifting module. Our first example of
logic-level conversion will be to look at a resistor-based solution known as
a voltage divider.

Voltage dividers as logic-level converters

A voltage divider circuit constructed of appropriately selected resistors can
be used to shift down from 5 volts to 3.3 volts, allowing you to use a 5-volt
output from a device as the input to your 3.3-volt Raspberry Pi pin.

To be crystal clear in your understanding and learning, in this section, we are dealing
with digital electronics, specifically digital input and the application of a voltage
divider within a digital input circuit. For your own learning and understanding, please
ensure that, after completing this chapter, you are comfortable with the basic practical
differences and application of a voltage divider in both analog and digital circuits.

The following diagram is the same example we saw previously in Figure
6.8, only this time, it's been drawn within a different context; that is,
showing how a 5-volt input can be shifted down to 3.3 volts:



Figure 6.11 – Using a voltage divider as a logic-level shifter

A voltage divider cannot shift up a voltage from 3.3 volts to 5 volts.
However, cast your mind back to our discussion on digital input and Figure
6.4, where we explained how an input pin reads a digital high as long as the
voltage was >= ~2.0 volts. Well, the same often applies to 5-volt circuits – as
long as the input voltage is >= ~2.0 volts (which 3.3 volts is), the 5-volt
logic will register a logic high. The digital low works in the same manner
too when a voltage of <= ~0.8 volts is applied.

This is often the case, though you will need to check the details and
datasheet of the 5-volt device in question. It may mention the minimum
voltage explicitly, or may simply mention that it will work with 3.3-volt
logic. If there is no obvious indication of the device supporting 3.3-volt
logic, you can always test it out yourself using 3.3 volts. This is safe to do
because 3.3 volts is less than 5 volts, which means there is no risk of
damage. At worst, it just will not work or work unreliably, in which case you
can use a dedicated logic-level converter. We'll discuss this next.

Logic-level converter ICs and modules



An alternative to a voltage divider circuit is a dedicated logic-level shifter or
converter. They come in IC (chip) form and breadboard-friendly breakout
modules. There's no math involved because they are more or less plug and
play, and they include multiple channels so that they can convert multiple
I/O streams simultaneously.

The following image shows typical 4-channel (left) and 8-channel (right)
logic-level conversion breakout modules. The 4-channel on the left is built
using MOSFETs, while the 8-channel on the right uses a TXB0108 IC.
Please note that while we will cover MOSFETs in Chapter 7, Turning Things
On and Off, our focus will be using MOSFETs as switches, not logic-level
conversion applications:

Figure 6.12 – Logic-level converter breakout modules

Logic-level shifter modules also have two halves – a low voltage side and a
high voltage side. In relation to your Raspberry Pi, we connect its 3.3-volt
pin and the GPIOs to the low-voltage side, and then connect another higher
voltage circuit (for example, a 5-volt circuit) to the high-voltage side.

The forthcoming example will be based around a module similar to the 4-channel
MOSFET module pictured previously, which has an LV and HV Terminal, and two GND
Terminals. If you are using a different module, you may need to consult its datasheet and
adjust the wiring appropriately for use in the example.

Let's see level conversion in action. We will do this by building a circuit and
measuring the voltage. Previously, in the Digital output section, we
connected a multimeter directly to a Raspberry Pi GPIO pin and observed



that when the GPIO was high, the multimeter read ~3.3 volts. This time, we
will connect our multimeter to the HV side of a logic-level converter and
observe that the multimeter reads ~5 volts when the GPIO pin is high.

We will start by building our circuit, which we will do in two parts:

Figure 6.13 – Visualizing 3.3-volt to 5-volt level shifting (part 1 of 2)



Here are the first set of steps to follow, in which we place the components
that wire up the low-voltage side of the logic-level converter. The step
numbers here match the numbered black circles shown in the preceding
diagram:

1. Place your logic-level converter on your breadboard.
2. Connect the LV (low voltage) Terminal of the logic-level converter to

the positive side of the left-hand side power rail. We will call this rail
the low voltage rail because it will be connected to the lower of our
supply voltages (that is, 3.3 volts). The LV Terminal is the low voltage
side power input Terminal for the logic-level converter.

3. Connect the positive side of the low voltage rail to a 3.3-volt power pin
on your Raspberry Pi.

4. Connect the GND Terminal on the low voltage side of the logical-level
converter to the negative rail on the low voltage rail.

5. Connect the negative rail on the low voltage rail to a GND pin on your
Raspberry Pi.

6. Finally, connect port A1 on the logic-level converter to GPIO 21 on
your Raspberry Pi.

Next, we'll wire up the high voltage side of the logic-level converter and
connect our multimeter:



Figure 6.14 – Visualizing 3.3-volt to 5-volt level shifting (part 2 of 2)

Here are the second set of steps to follow. The step numbers here match the
numbered black circles shown in the preceding diagram:

1. Connect the positive rail on the right-hand side power rail to a 5-volt
pin on your Raspberry Pi. We will call this rail the high voltage
rail because it will be connected to the higher of our supply voltages
(that is, 5 volts). The HV Terminal is the high voltage side power input
Terminal for the logic-level converter. 



2. Connect the negative rail of the high voltage rail to the negative rail of
the low voltage rail. You may recall that all GND connections are
common across a circuit. If you need a refresher on this concept, please
revisit the Introducing ground connections and symbols section in Chapte
r 2, Getting Started with Python and IoT.

3. Connect the HV Terminal of the logic-level converter to the positive
side of the high voltage rail.

4. Connect the GND Terminal on the high voltage side of the logic-level
converter to the negative rail of the high voltage rail.

5. Connect the voltage-measuring Terminal of your multimeter to port B1
on the logic-level converter.

6. Connect the com Terminal of your multimeter to the negative rail of
the high voltage rail.

7. Finally, set your multimeter to its voltage mode.

Now that we have built our circuit, let's run a Python program and confirm
that our multimeter reads ~5 volts when GPIO 21 is high. Here is what we
need to do:

1. Run the code in the chapter06/digital_output_test.py file – it's the same
code we used previously for digital output in the section titled Digital
output.

2. On the low voltage side, our Raspberry Pi is pulsing GPIO 21 between
low (0 volts) and high (3.3 volts) on channel 1 port A1, while on the
high voltage side, our multimeter, which is connected to channel 1 port
B1, will alternate between 0 and ~5 volts, illustrating the shift of a 3.3-
volt logic-level high to a 5-volt logic-level high.

The reverse scenario is also possible; that is, if you applied a 5-volt input to
the high voltage side, it will be converted into 3.3 volts on the low voltage
side, which can safely be read as input by a 3.3-volt Raspberry Pi GPIO pin.

Building this reverse scenario is an exercise that you might like to try on
your own – you already have the core knowledge, code, and circuits to
achieve this; you just need to wire it all up! I encourage you to try this, and
to get you started, here are some tips:



Place a push button and pull-up resistor on your breadboard, and wire it
up to port B1 on the high voltage side of the logic-level converter. This
circuit (schematically) is identical to what you have seen previously
in Figure 6.6, except that the source will now be 5 volts, and the GPIO
pin is now port B1.
To test your circuit, you can use the same digital input code we used
previously, which can be found in the chapter06/digital_input_test.py file.

If you get stuck, need a reference breadboard layout, or wish to check
your circuit build, you can find a breadboard layout in
the chapter06/logic_level_input_breadboard.png file.

When using a logic-level converter IC, breakout module, or a voltage-divider as a level
shifter, always test the input/output voltages with your multimeter before connecting
them to an external circuit or your Raspberry Pi. This check will ensure you have wired
the converter correctly and that the voltages have been shifted as you intended.

Let's conclude our discussion of level conversion by comparing the two
approaches we have looked at.

Comparing voltage dividers and logic-level
converters

Is one approach better than the other? It depends, though I will say that a
dedicated converter will always outshine a basic voltage divider, and they
are a lot less fiddly to use with a breadboard. A voltage divider is cheaper to
build but only works in a direct direction (you'll need two voltage divider
circuits to perform bi-directional I/O). They also have relatively high
electrical impedance, meaning that there is a practical delay that occurs
between the variable resistance changing and the measurable voltage
changing. This delay is enough to make a simple voltage divider impractical
for circuits where there is fast switching between high and low states. A
dedicated logic-level converter overcomes these limitations, plus they are
multi-channel, bi-directional, faster, and more efficient.

Summary



This chapter commenced with a quick overview of the basic tools and
equipment that you will need as you get further into electronics and the
circuits that we will cover in Section 3 (which we'll be commencing in the
next chapter). Then, we went through some suggestions to help keep your
Raspberry Pi safe while you are connecting electronics to its GPIO pins, as
well as a few tips when it comes to purchasing components.

Then, we explored Ohm's Law (and very briefly Kirchhoff's) before working
through the reasons and calculations as to why our LED circuit was using a
200 Ohm resistor. We followed this example by looking at the electronic
properties of digital circuits, where we explored logic voltage levels, floating
pins, and pull-up and pull-down resistors. We then looked at analog circuits
and worked through an example of a voltage divider circuit. We concluded
this chapter by looking at logic-level conversion and how you can interface a
5-volt logic device with a 3.3-volt logic device such as your Raspberry Pi. 

The goal of this chapter was to introduce you to fundamental electronic
principles underpinning basic electronics and, in particular, electronic
interfacing to devices such as a Raspberry Pi. I have endeavored to also
explain the basic why behind these principles and how they influence what
components are chosen for a circuit. Armed with this information, you
should now be in a position to better understand how simple circuits are built
to work with your Raspberry Pi.

Furthermore, you can leverage this understanding as your starting point to
further develop and advance your electronic skills. You'll find links to useful
electronic-based websites in the Further reading section, plus we'll see many
of these principles in use as we proceed through Section 3, IoT Playground.

When you're ready to get started, I'll see you in the next chapter – which is
also the start of Section 3, IoT Playground – where we will explore different
methods of switching things on and off.

Questions



As we conclude, here is a list of questions for you to test your knowledge
regarding this chapter's material. You will find the answers in the
Assessments section of the book:

1. You have a circuit that requires a 200Ω resistor, but you only have a
330Ω resistor available. It is safe to use this value?

2. You substitute a higher value resistor in a circuit but the circuit does not
work. With respect to Ohm's Law, what could be the problem?

3. You calculated a suitable resistor value for a circuit using Ohm's Law,
but when you applied power to the circuit, the resistor started to
discolor and let off smoke. Why?

4. Assuming GPIO 21 is configured via Python as an input pin and it is
connected by a wire directly to the +3.3-volt pin, what value will
pi.read(21) return?

5. You have a push button set up so that when it's pressed, it connects
GPIO 21 to a GND pin. When the button is not pressed, you notice that
your program is erratic and appears to receive a phantom button press.
What could the problem be?

6. You want to connect a device that operates its output pins at 5 volts to a
Raspberry Pi GPIO input pin. How can you do this safely?

7. True or false – A resistor voltage divider circuit can be used to convert
a 3.3-volt input into 5 volts for use with a 5-volt logic input device.

Further reading
The following two sites are electronic manufacturers and they both feature a
wide range of entry-to-mid-level tutorials. They focus on the practical
aspects of electronics and don't bombard you with too much theory. Try a
search for Raspberry Pi on their sites:

https://learn.adafruit.com

https://learn.sparkfun.com

https://learn.adafruit.com/
https://learn.sparkfun.com/


In relation to the concepts that we have covered in this chapter, here are
some specific links on the aforementioned sites:

All About LEDs: https://learn.sparkfun.com/tutorials/light-emitting-diodes-l
eds

Ohm's Law, Power, and Kirchhoff's Law Primer: https://learn.sparkfun.co
m/tutorials/voltage-current-resistance-and-ohms-law

Voltage Dividers: https://learn.sparkfun.com/tutorials/voltage-dividers

Pull-Up/Down Resistors: https://learn.sparkfun.com/tutorials/pull-up-resist
ors/all

Resistors and Color Codes: https://learn.sparkfun.com/tutorials/resistors

If you want to go deeper, the following two websites are excellent (and free)
resources that cover a diverse range of topics on electronic fundamentals and
theory:

https://www.allaboutcircuits.com

https://www.electronics-tutorials.ws

I recommend spending a few moments just clicking around these sites to get
an idea of what they include. That way, if you come across an electronic
term, component, or concept in this book that you want to explore further,
you'll have an idea where to start your investigation. Here are the two links
to begin your exploration:

https://www.electronics-tutorials.ws/category/dccircuits (DC Circuit Theory)

https://www.allaboutcircuits.com/textbook/direct-current (DC Circuit Theory)

If you browse through the indexes on these sites, you will find sections
including Ohm's Law, power, Kirchhoff's Laws, voltage dividers, and digital
and analog electronics.

https://learn.sparkfun.com/tutorials/light-emitting-diodes-leds
https://learn.sparkfun.com/tutorials/voltage-current-resistance-and-ohms-law
https://learn.sparkfun.com/tutorials/voltage-dividers
https://learn.sparkfun.com/tutorials/pull-up-resistors/all
https://learn.sparkfun.com/tutorials/resistors
https://www.allaboutcircuits.com/textbook/
https://www.electronics-tutorials.ws/
https://www.electronics-tutorials.ws/category/dccircuits
https://www.allaboutcircuits.com/textbook/direct-current/


Section 3: IoT Playground - Practical
Examples to Interact with the

Physical World
This is the section where we cover the Things part of IoT. We will explore
and experiment with a variety of common sensors, actuators, and electronic
circuits, which we will use to interact with the physical world using Python.
And along the way, we will see many practical applications of the core
electronics principles that we learned in Section 2. In the latter part of this
section, we will also combine our learning from Section 1 (that is the
Internet part of IoT) to create end-to-end IoT applications using a variety of
different approaches.

This section comprises the following chapters:

Chapter 7, Turning Things On and Off
Chapter 8, Lights, Indicators, and Displaying Information
Chapter 9, Measuring Temperature, Humidity, and Light Levels
Chapter 10, Movement with Servos, Motors, and Steppers
Chapter 11, Measuring Distance and Detecting Movement
Chapter 12, Advanced IoT Programming Concepts – Threads, AsyncIO,
and Event Loops
Chapter 13, IoT Visualization and Automation Platforms
Chapter 14, Tying It All Together – An IoT Christmas Tree



Turning Things On and Off
In the previous chapter, we looked at core electronic circuits and concepts
that you will use when interfacing digital and analog circuits with your
Raspberry Pi's GPIO pins.

In this chapter, we will cover how to switch things on and off that require
more voltage and current than can be safely used with your Raspberry
Pi. When it comes to electronics, hundreds of different components can be
used for controlling and switching. And there are thousands of different ways
they can be configured. We will be focusing on three common complements
—optocouplers, transistors, and relays.

An understanding of how to control and switch electrical circuits on or off is
a very important topic when interfacing with a Raspberry Pi. As we discussed
in Chapter 5, Connecting your Raspberry Pi to the Physical World, Raspberry
Pi GPIO pins are only capable of safely delivering a few milliamps of output
current and a fixed 3.3-volts. After completing this chapter, your knowledge
of optocouplers, transistors, and relays will mean you can start controlling
devices that have different current and voltage requirements.

Here is what we will cover in this chapter:

Exploring a relay driver circuit
Determining a load's voltage and current
Using an optocoupler as a switch
Using a transistor as a switch
Using a relay as a switch

Technical requirements
To perform the exercises in this chapter, you will need the following:

Raspberry Pi 4 Model B
Raspbian OS Buster (with desktop and recommended software)



A minimum of Python version 3.5

These requirements are what the code examples in this book are based on. It's
reasonable to expect that the code examples should work without
modification on a Raspberry Pi 3 Model B or a different version of Raspbian
OS as long as your Python version is 3.5 or higher.

You will find this chapter's source code in the chapter07 folder in the GitHub
repository available here: https://github.com/PacktPublishing/Practical-Python-Progr
amming-for-IoT.

You will need to execute the following commands in a Terminal to set up a
virtual environment and install the Python libraries required for the code in
this chapter:

$ cd chapter07              # Change into this chapter's folder

$ python3 -m venv venv      # Create Python Virtual Environment

$ source venv/bin/activate  # Activate Python Virtual Environment

(venv) $ pip install pip --upgrade        # Upgrade pip

(venv) $ pip install -r requirements.txt  # Install dependent packages

The following dependencies are installed from requirements.txt:

PiGPIO: The PiGPIO GPIO library (https://pypi.org/project/pigpio)

The electronic components we will need for this chapter's exercises are as
follows:

1 x 2N7000 MOSFET (sample datasheet: https://www.alldatasheet.com/datas
heet-pdf/pdf/171823/ONSEMI/2N7000.html)
1 x FQP30N06L MOSFET (optional—sample datasheet: https://www.allda
tasheet.com/datasheet-pdf/pdf/52370/FAIRCHILD/FQP30N06L.html)
1 x PC817 optocoupler (sample datasheet https://www.alldatasheet.com/datas
heet-pdf/pdf/547581/SHARP/PC817X.html)
1 x SDR-5VDC-SL-C relay (sample datasheet: https://www.alldatasheet.co
m/datasheet-pdf/pdf/1131858/SONGLERELAY/SRD-5VDC-SL-C.html)
1 x 1N4001 diode
2 x 1k Ω and 1 x 100k Ω resistors

1 x 5mm red LED

https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://pypi.org/project/pigpio
https://www.alldatasheet.com/datasheet-pdf/pdf/171823/ONSEMI/2N7000.html
https://www.alldatasheet.com/datasheet-pdf/pdf/52370/FAIRCHILD/FQP30N06L.html
https://www.alldatasheet.com/datasheet-pdf/pdf/547581/SHARP/PC817X.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131858/SONGLERELAY/SRD-5VDC-SL-C.html


1 x Size 130 (R130) DC motor rated 3-6 volts (ideally with a stall
current < 800mA) or alternate DC motor with compatible voltage and
current ratings
Digital multimeter capable of measuring current (it'll have an A or mA
setting)
2 x External power sources—at a minimum, a 3.3V/5V breadboard-
mountable power supply

Exploring a relay driver circuit
A common introduction to electronic switching is the mechanical relay—a
device that operates like a common switch, only it's turned on and off by
applying power to it. Unfortunately, connecting a relay directly to a
Raspberry Pi is dangerous! Relays commonly require too much current and
voltage and (if they do switch) can damage your Raspberry Pi. So, we need a
driver circuit that sits between your Raspberry Pi and the relay. An example
of this circuit is shown in Figure 7.1:

Figure 7.1 – Relay driver circuit



This is the circuit we will build, piece-by-piece during this chapter. This
circuit is representative of the many relay control modules that you will find
on eBay, Banggood, and similar web sites. These boards are certainly
convenient to use—when you get them to work. Unfortunately, all too often,
a lack of clear documentation can make getting them to work fiddly and
difficult, especially if you are new to electronics.

We are about to build and explore the three sub-circuits depicted in Figure
7.1. This will help you to understand how optocouplers, transistors, and
relays work as switches and why they are often chained together to control a
relay. This knowledge will also help you to reverse-engineer a pre-made relay
control module in case you can't get one working.

Before we look at the optocoupler sub-circuit, we need to first discuss load
voltages and currents.

Determining a load's voltage and
current
A load is something that you want to control, or for this chapter, switch on
and off. LEDs, transistors, optocouplers, relays, lights, electric motors,
heaters, pumps, automatic garage doors, and TVs are all examples of a load.
If you refer back to Figure 7.1, you will notice the word Load on the right-
hand side of the diagram. This is where you connect the thing you want to
switch on or off.

The transistors, optocouplers, and relays components appear in this
aforementioned load list. Referring back to Figure 7.1, the relay appears as
the load to the transistor sub-circuit while the transistor sub-circuit appears as
the load to the optocoupler sub-circuit.

It's important to know two properties about the load you want to control:

What voltage does the load require?
What current does the load require?



Sometimes, these properties can be found on the device itself or in its manual
or datasheet. At other times, they need to be calculated or the load needs to be
manually measured.

Knowing these properties is important because they influence which
components are chosen for a circuit, including the specifications for a suitable
power supply. We will make mention of load currents as we build circuits
throughout this chapter, so a little more context is coming. For now, let's look
at how to measure the current load of a DC motor.

Measuring the current requirement of a DC motor

Motors are a common item that people want to control, and they serve as an
excellent example in current measurement. Let's perform an exercise to
measure the current used by our DC motor:

Figure 7.2 – R130 DC Motor

A typical size 130 (R130) DC motor is shown in the preceding photograph,
together with a set of jumper leads soldered to the motor's terminals so it can
be plugged easily into a breadboard. This motor has a red back, however,
other colors are common—especially clear/white. The color has no bearing
on the motor specifications.

As you proceed with the following steps, please consult your multimeter manual if you are
unsure how to place it into current measurement mode.



Here are the steps to follow:

1. Connect up a circuit as shown in Figure 7.3:

Figure 7.3 – Measuring current with a multimeter

We are assuming that the motor here is the one mentioned in the
Technical requirements section at the start of the chapter. This motor
is small enough to be powered from a breadboard power supply,
which typically can supply between 500mA and 800mA. For larger
motors (and other items where you do not know their ratings and want
to measure them), you will require a more capable power supply.

If you are powering a breadboard power supply from a USB phone charger, check your
power supplies 5-volt output with a multimeter to make sure it is providing about 5 volts.
Low wattage chargers and poor quality USB cables might not be able to deliver enough
power for the power supply to operate correctly. Ideally, read the datasheet and use the
suggested power adapter, which commonly are 7 to 12 volts and 1 amp.

2. Make sure your multimeter is set to measure milliamps (mA), and that
its red lead is connected to the correct lead input (typically it will be
labeled A or mA). If your DMM has a µA input, do not use it or you
may blow your DMM's protection fuse (the fuse can be replaced).



3. Apply power to the circuit, and the motor will spin.
4. Your multimeter will display the current draw of the motor. Write down

this value. This is known as the continuous or free current and is the
current your motor uses while freely spinning with nothing connected to
its shaft.

5. Disconnect power to the motor.
6. Using a pair of pliers, hold the motor's shaft so it cannot spin.
7. Reapply power to the motor, and quickly observe (and write down) the

DMM's reading. This reading is called the stall current. A motor will
use the most current when its shaft has been forcefully stopped from
moving. 

8. Disconnect the power to the motor.

We have now measured two currents. My readings on an R130 motor were as
follows (and yours will be different):

Continuous or free current: ~110mA to ~200mA—As the motor heats
from use, it will use less; the ~200mA measurement was when the motor
was cold. Over one minute, it dropped to ~110mA.
Stall current: This was ~500mA to ~600mA.

What this means is that our motor will need between 200mA and 600mA
milliamps for normal operation and that any circuit we wish to use with our
motor must be able to realistically handle 600mA so that it will not get
damaged if the motor stalls (or we need to design suitable protection,
however, this is beyond our scope).

It is interesting to note that there's also a start-up current, which is a momentary peak
current that occurs when the motor starts, but we won't be able to measure that on a
generic DMM.

Now that we have the current draw for our R130 motor, let's collect more
current data for a relay and an LED.

Measuring the current requirement of a relay and
LED



We will also measure the current draw of an LED and the relay we will use in
this chapter when we reach the section titled Using a relay as a switch. You
can measure the current draw using steps 1 to 4 from the preceding section.
The setup to perform this measurement for an LED and resistor pair is
illustrated here:

Figure 7.4 – Measuring current through a resistor/LED circuit

This is the basic process we follow:

1. We attach an LED and a 1kΩ resistor (or a relay) in place of the motor
shown in Figure 7.3.

2. Set your multimeter to milliamps mode.
3. Apply power to the circuit.
4. Measure the amperage on your multimeter.

Once you have performed (and jotted down) the measurement you receive,
remove the LED and resistor from the breadboard and wire in your relay and
perform the same measurement.

The following diagram shows an SRD-05VDC-SL-C relay and which
terminals on your relay you need to connect. Please note that you will need to
solder header pins (pictured) or wires (a good option is to cut in half a



DuPont cable) onto your relay's terminals as it will not fit directly into a
breadboard:

Figure 7.5 – SRD-05VDC-SL-C relay

With a 5V source, you should obtain values similar to these on your
multimeter:

5mm red LED in series with a 1000Ω resistor: 3mA (values from Ohms
calculation and rounded up I = (5V - 2.1V) / 1000Ω = 2.9mA)
Relay: 70mA to 90mA (values from the datasheet and confirmed by my
own measurements)

The process for calculating the current for the LED was discussed in Chapter 6,
Electronics 101 for the Software Engineer. The only difference is that here we
are using a 5-volt source and a 1kΩ resistor, not 3.3 volts and a 200Ω resistor
as we did in that chapter.

Please note that the optocoupler and MOSFET component we will be using do have a
voltage drop aspect to them that does affect current through the attached load. This
impact of these voltage drops are immaterial for our purposes, so they are not taken into
account for the calculations in this chapter for brevity.

You have now learned how to measure the current draw of a DC motor,
LED/resistor pair, and a relay using a multimeter. Knowing the current



limitations and expectations of a device you want to control, and even the
sub-circuit you are connecting to, is a vital piece of information that is
required so that you can select suitably rated components when designing a
circuit and choosing a suitable power source.

We will be referencing the measurements you have performed in this section
as we explore optocouplers, MOSFETs, and relays throughout this chapter.
Specifically, we will compare the current ratings of these components (found
in their respective datasheets) to our DC motor, LED/resistor, and relay
measurements and consider what components can be used to directly control
which load.

We will start by learning about optocouplers and how to use them as a switch.

Using an optocoupler as a switch
An optocoupler (or optoisolator) is a light-controlled component that is used
to electrically isolate two circuits. An illustration and the schematic symbol
of an optocoupler are shown here:

Figure 7.6 – Optocoupler symbol and component with pins labeled

The two sides of an optocoupler can be described as follows:

An input side: The side we will connect to a Raspberry Pi GPIO pin
An output side: The side we will connect to another circuit



Inside an optocoupler on the input side is an internal LED (you will notice the
LED symbol within the optocoupler symbol in Figure 7.6) while on
the output side there is a phototransistor that responds to the LED's light.
What this means is that the transfer of control (that is, switching) from the
input side to the outside side is performed by light, hence, there is no physical
electrical connection between the two sides. For us, this means that any
failures or accidents on the output side should not cause damage to our
Raspberry Pi. The PC817 has its isolation rated as 5000 volts, which are well
beyond any voltages we would expect to be used with IoT electronics and
devices.

When the input side LED is off, the output side phototransistor is off.
However, when the LED is illuminated (it's inside the optocoupler
component, so you will not see it) by applying current to pins 1 (anode) and 2
(cathode), the phototransistor is activated (on) and allows current to flow
between pins 4 (collector) and 3 (emitter).

Let's create a simple circuit to demonstrate a PC817 optocoupler, which has
the following specifications:

Input side (the LED): This has the following:
Typical forward voltage (VF) is 1.2 volts DC
Maximum forward current (IF) is 50mA DC

Output side (the phototransistor): This has the following:
Maximum collector-emitter voltage (VCEO): 80 volts DC
Maximum collector current (IC): 50mA DC
Collector-Emitter Saturation Voltage VCE(sat) in the range 0.1 to
0.2 volts (basically the voltage drop)

Keeping these specifications in mind, let's begin our circuit build.

Building the optocoupler circuit

We're about to build the circuit illustrated in the following diagram. This
circuit uses the PC817 optocoupler to electrically isolate our Raspberry Pi
and the LED subcircuit:



Figure 7.7 – Optocoupler circuit

The step numbers here match the numbered black circles in Figure 7.7:



1. Place the LED into your breadboard, taking care to orientate the LED as
illustrated regarding its cathode leg.

2. Place a 1kΩ resistor into the breadboard. One end of this resistor
connects inline with the cathode leg of the LED.

3. Place the PC817 Optocoupler IC into your breadboard. The white dot on
the IC indicates pin number 1 of the IC. Your IC may have or not have
the white dot, however, there should be a distinct marking on the IC to
tell you the first pin. Please refer back to Figure 7.6 for all pin
numberings.

4. Place a 1kΩ resistor into your breadboard. One end of this resistor
connects with pin 1 of the PC817.

5. Connect the anode leg of the LED to the positive rail of the right-hand
side power rail.

6. Connect pin 4 of the PC817 to the other end of the resistor you placed at
step 2.

7. Connect pin 3 of the PC817 to the negative rail of the right-hand side
power rail.

8. Connect the positive output of a 5-volt power supply into the right-hand
side positive power rail.

9. Connect the negative output of a power supply into the right-hand
side negative power rail.

10. Connect the other end of the resistor you placed at step 4 to a 3.3-volt
pin on your Raspberry Pi.

11. Finally, connect pin 2 of the PC817 to GPIO 21 on your Raspberry Pi.

In Figure 7.7, you could connect the wires at steps 8 and 9 (which go to the External
Power Supply) directly to your Raspberry Pi's +5-volt pin and a GND pin. We're only
using a small amount of current for the red LED, however, for higher current loads, you
must use an external power supply. The +5 volt pin on your Raspberry Pi is connected
directly to the power supply you are using to power your Raspberry Pi. Using this power
supply to power your circuits effectively robs current available to your Raspberry Pi. Take
too much, and your Raspberry Pi will reset! Please note (this is important) that the
caveat of this action is that you lose the electrical isolation offered by the optocoupler
because you will have electrically connected the input and output sides of the optocoupler
together (remember, the input and output sides are not electrically inside the optocoupler
because control is achieved by light).

Now that you have completed the circuit build, we will test the circuit and
explore the code that makes it work.



Controlling the optocoupler with Python

Start by running the code in the chapter07/optocoupler_test.py file, and observe
the LED blink. Following is the part of the code responsible for the blinking:

# ... truncated ...

  pi.write(GPIO_PIN, pigpio.LOW) # On.     # (1)

  print("On")

  sleep(2)

  pi.write(GPIO_PIN, pigpio.HIGH) # Off.   # (2)

  print("Off")

  sleep(2)

# ... truncated ...

Here's what's happening:

At line (1), GPIO 21 is low and the internal LED on the input side is on.
The phototransistor on the output side detects this light and is activated,
allowing current to flow between the output side's collector (pin 4) and
emitter (pin 3), and hence our red LED illuminates.
The input side of the PC817 circuit is wired as active low—that's why at
line (1), GPIO 21 is made low to turn the circuit on, and at line (2),
GPIO 21 is set to high to turn the circuit off. Alternative wiring would
be active high. If you want to experiment and change the circuit to be
active-high, you would attach the wire from step 10 in Figure 7.7 to a
GND pin (rather than a 3.3-volt pin), and reverse the pigpio.LOW and
pigpio.HIGH statements in the code.

We could have used a lower value resistor for R1 for the input-side LED, however, a 1kΩ
resistor provides more than enough current ((3.3V - 1.2V)/1000Ω = 2.1mA) to the internal
LED for the optocoupler circuit to work. You'll see 1kΩ, 10kΩ, and 100kΩ resistors used
in a lot of circuits simply because these are nice round values. We've also used a 1kΩ
resistor for R2 for the red LED for convenience.

Can you remember from the previous chapter, Chapter 6, Electronics 101 for
the Software Engineer, when we discussed that we should not expect more
than 8mA from a Raspberry Pi GPIO pin? Well, by using a PC817
optocoupler, we can now control up to 50mA by placing an optocoupler
between a GPIO pin and a circuit. Furthermore, we are also not limited to the
3.3 volts of a GPIO pin since the PC817 can handle up to 80 volts.

Remember that a GPIO pin's primary role is to control something, not power it, so always
think about control and power requirements independently.



In the previous section, we calculated (or measured) the current draw of our
motor, relay, and an LED. Here is that data in the context of our PC817
optocoupler using a 5-volt power source on the output side:

The LED and 1kΩ resistor needed a current of 3mA.
The relay needed between 70mA and 90mA.
The motor needed ~500mA to ~600mA (stall current).

The LED's 3mA is less than the optocouplers maximum output-side rating of
50mA, so it's fine to drive the LED directly on the output side. The relay and
motor, however, require a current beyond the limits of the PC817, so using
them on the output may result in damage to the optocoupler.

While we can and do use optoisolators as a digital switch, they are often used
as an isolating barrier to drive other components, which in turn can drive
loads requiring higher currents. We will see this later on when we build the
full relay driver circuit from Figure 7.1, but for now, let's learn how to use a
transistor as a digital switch.

Using a transistor as a switch
Transistors are a hands-down most significant electronic component in use
today and the backbone of the digital revolution. They can be used in two
basic ways—as an amplifier or as a digital switch. Our focus is going to be on
digital switching, and we will be using a transistor type known as a Metal-
Oxide-Semiconductor-Field-Effect Transistor (MOSFET), specifically, an
N-Channel Enhancement Mode MOSFET—yes, it's a mouthful!

Don't get too caught up on the long technical name or the many forms of
transistors that exist. The simple take-home here is that an N-Channel
Enhancement Mode MOSFET works well as a digital switch that we can
control using our Raspberry Pi, or as we will see later, from another source
such as an optocoupler.

FETs are voltage-controlled transistors. Another type of transistor known as a Bipolar
Junction Transistor (BJT) is a current-controlled transistor. BJTs are perfectly fine to



use with a Raspberry Pi but require additional considerations. You'll find a link in the
Further reading section to further your learning on transistors.

The following exercise will be using a 2N7000, an N-Channel Enhancement
Mode MOSFET, as illustrated in Figure 7.8. The leg names are Source, Gate,
and Drain. Two different packaging styles are also illustrated, the TO92 and
TO220. Notice that the arrangement of the Source, Gate, and Drain legs on
the two styles are different:

Figure 7.8 – N-Channel Enhancement MOSFET symbol and common package styles

The 2N7000 has the following specifications in its datasheet:

Maximum Drain Source Voltage (VDSS) of 60 volts DC
Maximum Continuous Drain Current (ID) of 200 mA DC
Maximum Pulsed Drain Current (IDM) of 500 mA DC
Gate Threshold Voltage (VGS(th)) in the range of 0.8 to 3 volts DC
Drain−Source On−Voltage (VDS(on)) in the range of 0.45 to 2.5 volts
DC  (voltage drop)

Here is how to interpret these parameters regarding the 2N7000:

It can safely control a load not exceeding 60 volts (VDSS) and a
continuous 200mA (ID), but a pulse of 500mA (IDM) is OK.
It will ideally require a voltage >= 3 volts to switch it on (VGS(th)).



It will consume, on the load-side circuit, a voltage in the range of 0.45 to
2.5 volts (VDS(on)).

The 2N7000 (and the FQP30N06L that we will discuss shortly) are logic-level
comparable MOSFETs. They are suitable for a Raspberry Pi because their maximum gate
voltage VGS(th) is less than a GPIO pin's 3.3 volts.

Let's get started and build a circuit to use the 2N7000 with our Raspberry Pi.

Building the MOSFET circuit

We will build our circuit in two parts, starting with the placement of the
components on our breadboard:



Figure 7.9 – MOSFET transistor circuit (part 1 of 2)

Following are the steps for the first part of our build. The step numbers match
the numbered black circles in Figure 7.9:



1. Place the MOSFET into your breadboard, taking care to orientate the
component the correct way around regarding the Source,
Gate, and Drain legs. Our example layout assumes a 2N7000 MOSFET.
Please see Figure 7.8 if you need help to identify the legs.

2. Place a 100kΩ resistor into your breadboard. One end of this resistor
connects to the Gate leg of the MOSFET.

3. Place a 1kΩ resistor into the breadboard. One end of this resistor also
connects to the Gate leg of the MOSFET.

4. Place the LED into the breadboard, taking care to orientate the
component as shown regarding its cathode leg.

5. Place a 1kΩ resistor into the breadboard. One end of this resistor
connects with the cathode leg of the LED.

6. Place the diode into the breadboard, orientating the component so that
the cathode leg (the end of the diode with the band on the casing) is
facing toward the bottom of the breadboard. We will discuss the purpose
of this diode shortly.

Now that we have placed the components into our breadboards, let's wire
them all up:



Figure 7.10 – MOSFET transistor circuit (part 2 of 2)



Following are the steps for the second part of the build. The step numbers
match the numbered black circles in Figure 7.10:

1. Connect a GND pin from your Raspberry Pi into the negative rail of the
right-hand side power rail.

2. Connect the negative rails of the right-hand side and left-hand side
power rails.

3. Connect the 100kΩ resistor into the negative power rail.
4. Connect the Source leg of the MOSFET into the negative power rail.

5. Connect the Drain leg of the MOSFET to the 1kΩ resistor.
6. Connect the anode leg of the LED to the cathode leg of the diode.
7. Connect the anode leg of the LED (and cathode leg of the diode) to the

positive power rail on the right-hand side power rail.
8. Connect the 1kΩ resistor to GPIO 21 on your Raspberry Pi.
9. Connect the positive output terminal on your power supply into the

positive rail of the right-hand side power rail.
10. Connect the negative output terminal on your power supply into the

negative rail of the right-hand side power rail.

Well done. That's our circuit build complete. Let's briefly discuss this circuit
before we test it out.

Notice in Figure 7.10 (and Figure 7.1) the 100kΩ resistor R3. This is an
external pull-down resistor that ensures that the Gate leg of the MOSFET is
tied to GND (0 volts) when it is not pulled up to +3.3 volts when GPIO 21 is
high. MOSFETs have capacitive charge, so without a pull-down, the
MOSFET may appear sticky and slow when it transitions from on (GPIO 21
is high) to off (GPIO 21 goes low) as it discharges (note that this circuit is
active high). The pull-down resistor ensures a rapid discharge into the off
state. We use an external pull-down resistor in preference to an in-code
activated pull-down to ensures the MOSFET Gate is pulled down even when
the Raspberry Pi is powered off or when code has not run.

You will also notice that R1 and R3 create a voltage divider. The ratio of 1kΩ
and 100kΩ is suitable to ensure that >3 volts get to the gate leg of the
MOSFET to switch it on. If you need a refresher on pull-down resistors and



voltage dividers, we discussed them in Chapter 6, Electronics 101 for the
Software Engineer.

When adding resistors into a circuit—like adding in a pull-down—always consider with
the wider impact of the change. If, for example, the addition creates a voltage divider due
to the presence of an existing resistor, you then need to access the impact of the change on
the surrounding circuit. For our scenario, this is to ensure enough voltage is reaching the
MOSFET gate leg to turn it on.

After running the code in the next section, try removing R3 and run the code
again. I can't guarantee that you will see anything at your end, but you may
observe that the red LED fizzles out slowly rather than turning off promptly
when GPIO 21 goes low and that it behaves erratically instead of fading in
and out smoothly.

As with the optocoupler example, you can connect the wire's external power supply to
your Raspberry Pi's +5 pin and a GND pin for this LED example since its current
requirements are low.

With this basic understanding of a MOSFET circuit, let's run and explore a
simple Python program that interacts with our circuit.

Controlling the MOSFET with Python

Run the code in the chapter07/transistor_test.py file, and the red LED will turn
on then off, then fade in and out. Once you have confirmed that your circuit
works, let's continue and look at the code:

# ...truncated ...

pi.set_PWM_range(GPIO_PIN, 100)             # (1)

try:

  pi.write(GPIO_PIN, pigpio.HIGH) # On.     # (2)

  print("On")

  sleep(2)

  pi.write(GPIO_PIN, pigpio.LOW) # Off.

  print("Off")

  sleep(2)

We are using PWM in this example. In line (1), we are telling PiGPIO that,
for GPIO 21 (GPIO_PIN = 21), we want its duty cycle to be constrained to the
value range 0 to 100 (rather than the default 0 to 255). This is an example of
how we can change the granularity of duty cycle values in PiGPIO. We're



using 0 to 100 just to make reporting easier because it maps into 0% to 100%
for terminal output. 

Next, in line (2), we simply turn the GPIO on and off for a duration to test the
transistor circuit, and we will see the LED turn on then off after a 2-second
delay.

In line (3) in the following code, we use PWM to fade in the LED, before
fading it out again at line (4), both times using the duty cycle range set at line
(1) in the preceding code block:

  # Fade In.

  for duty_cycle in range(0, 100):                  # (3)

      pi.set_PWM_dutycycle(GPIO_PIN, duty_cycle) 

      print("Duty Cycle {}%".format(duty_cycle))

      sleep(0.01)

  # Fade Out.

  for duty_cycle in range(100, 0, -1):              # (4)

      pi.set_PWM_dutycycle(GPIO_PIN, duty_cycle) 

      print("Dyty Cycle {}%".format(duty_cycle))

      sleep(0.01)

# ...truncated ...

Let's check whether our relay and motor are safe to use with this transistor
circuit, given our 2N7000 is rated for 200 milliamps:

The relay can be used in place of the LED because it only needs between
70mA and 90mA.
The motor requires ~200mA to spin freely (continuous current), so it
might be safe...or not? Let's see.

When we tested the motor earlier in this chapter, we anticipated it will need
between ~200mA (the continuous current when cold) and ~500mA to
~600mA (the stall current)—remember these are my measurements, so
replace the values with your measurements. So, in principle, our 2N7000 will
be OK as long as the motor is not under load. Realistically, as soon as we
place a load on the motor's shaft, it will require more than 200mA continuous
current. In this respect, the 2N7000 is probably not an ideal transistor for
driving this motor. We need to seek out a MOSFET that can comfortably
handle 600mA of continuous current or more. We'll see the FQP30N06L
MOSFET shortly, which can handle this current and much more.



While the LED faded in and out with the PWM-related code, if you connect
the motor into the circuit in place of the LED/resistor pair, you will notice it
revs up then down. You've just discovered how to use the duty cycle property
of PWM to control the speed of a motor! We will be covering motors in more
detail in Chapter 10, Movement with Servos, Motors, and Steppers.

To use the motor or relay, you must use an external power supply and not the +5-volt pin
on your Raspberry Pi. If you try and use the +5-volt pin, you may find your Raspberry Pi
resets as you run the code.

We do not use PWM with relays because they're too slow to switch and if
they do work (at a very low PWM frequency), it's only wearing them out—
but try it anyway to see what happens; a short test will do no harm (try
adjusting the frequency of 8000 in code down to 10, that
is, pi.set_PWM_frequency(GPIO_PIN, 10)).

In our circuit, there is also the 1N4001 diode D1. This is known as a fly-back
or suppression diode. Its role is to protect the circuit from reverse voltage
spikes that can occur in electromagnetic components such as a relay or motor
when they are powered down. Granted, our LED is not magnetic, however, it
does not do any harm having the diode present.

Anytime you are controlling a component that works on electromagnetism (also known as
an inductive load), always correctly install a fly-back suppression diode.

In Figure 7.8, we also have an illustration of an FQP30N06L. This is a Power
N-Channel Enhancement Mode MOSFET capable of driving high amperage
loads. It has the following specifications in its datasheet:

Maximum Drain Source Voltage (VDSS) of 60 volts DC
Maximum Continuous Drain Current (ID) of 32A DC (amps not
milliamps!)
Maximum Pulsed Drain Current (IDM) of 128A DC
Gate Threshold Voltage (VGS(th)) in the range of 1 to 2.5 volts DC (< 5
volts so it's logic-level compatible)
Drain−Source On−Voltage (VSD) maximum of 1.5 volts DC

https://cdp.packtpub.com/hands_on_python_programming_for_iot/wp-admin/post.php?post=37&action=edit#post_34


You can substitute an FQP30N06L (or another N-Channel Enhancement
mode logic-level capable MOSFET) in the preceding circuit and it will work,
but keep the following in mind:

The G, D, and S legs of the FQP30N06L are in a different order to the
2N7000 so you will need to adjust the wiring.
When dealing with higher voltages and currents, it's a good idea to
electrically isolate the MOSFET from the Raspberry Pi using an
optocoupler (we'll see this configuration when we discuss relays next).
At high currents, Power MOSFETs can get very hot—the surrounding
components and wires and even the breadboard can melt, so approach
their use with caution and care.

Higher power MOSFETs can get hot when controlling high power loads and can be fitted
with a heatsink, for example, the FQP30N06L has a metal top with a hole where the
heatsink is attached. The determining factors and calculations as to when a headsink is
required are beyond our scope, however, if your MOSFET is getting too hot (and you are
using it within its datasheet parameters), then add a heatsink.

If you like the idea of controlling higher current loads using MOSFETs, you
might like to research ready-made MOSFET modules on sites such as eBay.
You now have the background after learning about optocouplers and
MOSFETs to understand how these modules are constructed—some just use
a MOSFET directly connected to the controlling device (that is, GPIO pin) as
we have just done while others place an optocoupler in between the
controlling device and the MOSFET.

You have learned the basics of using a MOSFET transistor as a digital switch.
Next, we will put that learning together with our learning on optocouplers to
build our relay driver circuit on a breadboard.

Using a relay as a switch
Classic relays are an electro-mechanical component that allows a smaller
current device to switch a higher current device or load on and off. In
principle, they are just like the MOSFET or optocoupler we used previously.
So, why have relays? Here are a few reasons:



For high voltage and current loads, they tend to be much cheaper
compared to an equivalent MOSFET.
At high currents, they do not get untouchably hot like a MOSFET.
Similar to an optocoupler, relays also provide electrical isolation
between the input and output circuits.
They are simply electrically controlled switches so they are easy to
understand and use for non-electrical engineers.
They have stood the test of time and proven to be a simple and robust
way to control high loads (even though they eventually will wear out—
the SRD-05VDC-SL-C datasheet lists its rated life expectancy to be
100,000 operations).

There is also a type of relay known as a Solid State Relay (SSR) that has no moving
parts, however, they are typically more expensive than a comparable mechanical relay.

Our first task is to create our circuit, which we will do next.

Building the relay driver circuit

Let's build our relay driver circuit. We will do this in three parts, starting with
the placements of the components:



Figure 7.11 – Relay driver circuit (part 1 of 3)

Following are the steps for the first part of the build. The step numbers match
the numbered black circles in Figure 7.11:

1. Place the PC817 into your breadboard, taking care that pin 1 of the IC is
connected to the left-hand breadboard bank as illustrated.

2. Place a 1kΩ resistor into your breadboard. One end of the resistor
connects to pin 1 of the PC817.

3. Place the MOSFET into your breadboard, taking care to orientate the
component the correct way around regarding the Source, Gate, and
Drain legs. Our example layout assumes a 2N7000 MOSFET. Please
see Figure 7.8 if you need help to identify the legs.

4. Place a 1kΩ resistor into your breadboard. One end of this resistor
connects the Gate leg of the MOSFET.



5. Place a 100kΩ resistor into your breadboard. One end of this resistor
also connects the Gate leg of the MOSFET.

6. Place the diode into your breadboard, taking care to orientate the
component as illustrated with the cathode leg (the end of the component
with the band) pointing toward the bottom of the breadboard.

Now that you have placed the individual components, next, we will wire up
the components:

Figure 7.12 – Relay driver circuit (part 2 of 3)

Following are the steps for the second part of the build. The step numbers
match the numbered black circles in Figure 7.12:

1. Connect the resistor you placed at the previous step 2 to a 3.3-volt pin
on your Raspberry Pi.



2. Connect pin 2 of the PC817 to GPIO 21 on your Raspberry Pi.
3. Connect pin 4 of the PC817 to the positive rail of the right-hand side

power rail.
4. Connect the Source leg of the MOSFET into the negative rail of the

right-hand side power rail.
5. Connect the 100kΩ resistor that connects into the Drain leg of the

MOSFET to the negative rail of the right-hand side power rail.
6. Connect pin 4 of the PC817 to the cathode leg of the diode.
7. Connect the Drain leg of the MOSFET to the anode leg of the diode.

Finally, we will connect the power supplies and relay:

Figure 7.13 – Relay driver circuit (part 3 of 3)

Following are the steps for the third and last part of the build. The step
numbers match the numbered black circles in Figure 7.13:

1. Connect the positive rail of the right-hand side power rail to the positive
output terminal of a 5-volt power supply.

2. Connect the negative rail of the right-hand side power rail to the
negative output terminal of a 5-volt power supply.

3. Connect the anode leg of the diode to one of the relay's coil terminal.
4. Connect the cathode leg of the diode to the relay's other coil terminal.



5. Connect the negative output of a different 5-volt power supply to the
com terminal on your relay.

At step 5, you must use two different external power sources for this circuit because the
current requirements of the relay coil and potential relay load will very likely be too much
to borrow (rob) from your Raspberry Pi's power supply.

6. Connect the positive output terminal of the different 5-volt power supply
to the positive input terminal of your load (for example, one of the
terminals on a motor).

7. Finally, connect the NO (Normally Open) terminal of the relay to the
negative input terminal of your load.

Using the NO terminal on the relay means the load will be off by default and only
powered when the relay is engaged, which happens when GPIO 21 is low (remembering
this circuit is active-low). If you connect your load to the NC (Normally Closed) terminal
in the relay, the load will be powered by default, including when your Raspberry Pi is
switched off.

Well done! Your completed breadboard circuit, as illustrated in Figure 7.13.
This is the breadboard build that matches the schematic diagram shown at the
commencement of this chapter in Figure 7.1. This breadboard circuit is
shown with a 5-volt relay coil power source and a 5-volt load power source.
This circuit, however, can be used with different power supplies subject to the
following pointers:

The choice of resistors and the 2N7000 MOSFET used in this circuit is
capable of driving a 12-volt relay like an SRD-12VDC-SL-C. You'll just
need to make sure the relay coil power source is 12 volts rather than 5
volts.
The load power source is illustrated as 5 volts, however, if your load
requires more voltage (that's within the relay's specifications), it can be
increased.

Now that we have a finished circuit, let's run a Python program to control the
relay.

Controlling the Relay Driver Circuit with Python



Run the following code, which is in the chapter07/optocoupler_test.py file. The
relay should activate with a click sound, and deactivate after 2 seconds. This
is the same code we used when we created and tested our optocoupler circuit
since it's the optocoupler that our Raspberry Pi is connected to.

We saw earlier when we learned about MOSFETs that we could connect the
MOSFET directly to a GPIO pin and control the relay, without needing an
optoisolator. So, why does the preceding circuit have one?

The answer is that our circuit does not technically need one, and there are
ready-made relay modules to be found (though rarer) that do not have an
optoisolator. However, there is no harm in having one present since it does
provide a level of electrical isolation protection just in case the relay control
circuit fails or there is a mishap when wiring up the power supply.

Finally, what about relay modules you can find on sites such as eBay that
have more than one relay? There is just a single relay circuit replicated
multiple times—you will typically be able to count a transistor and
optocoupler pair for each relay (although optocouplers and transistors can
come in chip form, that is, multiple optocouplers or optocouplers in a single
package, so on some modules you may just see the chips instead). Also, note
that some modules will use a BJT rather than a MOSFET. If you can read the
part numbers on the components, you can always perform a web search to
determine what they are.

To conclude our exploration of turning things on and off, here is a table
comparing the switching components we used in this chapter:

Optocoupler MOSFET Relay

Construction Solid state Solid state Mechanical

Current AC or DC
(depending

DC only (start your
research with

AC and DC



on
optocoupler) 

TRIACS for AC)

Cost $ - $$ $ (low capacity) to
$$$ (high capacity) $

Gets Really
Hot (Can't
touch)

No Yes for high current
power MOSFETs No

Control
Voltage /
Current

Low (need to
turn off and
on the
internal
LED)

Low (need to apply
voltage to the Gate)

High (need to
energize the
relay coil)

Load Voltage
/ Current

Low (for
example,
PC817 max
50mA)

Low (for
example, 2N27000 at
200mA); High (for
example, FQP30N06L
at 32A)

High (for
example, SRD-
05VDC-SL-
C 10A)

Electrical
Isolation Yes No Yes

Example
application

Provides
electrical
isolation
between a

Allows a low
current/voltage circuit
to control a higher
voltage/current circuit

Allows a low
current/voltage
circuit to
control a



controlling
circuit and
the circuit to
be controlled

higher
voltage/current
circuit

Longevity Long life Long life 

Short life
(moving parts
will wear
out eventually)

Use PWM Yes Yes

No—a relay
will not switch
fast enough,
plus you'll only
wear out the
relay faster!

 

Well done on completing this chapter! You now understand multiple ways to
control loads that have voltage and current requirements beyond the 3.3
volt/8mA limits of your Raspberry Pi's GPIO pins.

Summary
In this chapter, we learned how to switch things on and off. We commenced
by briefly reviewing a typical relay driver circuit, before learning how to
measure the current requirements of a DC motor, LED, and relay using a
multimeter. Next, we discussed the properties of an optocoupler and learned
at low to use it as a digital switch. Then, we discussed MOSFETs and
discovered how to use them as a switch and for motor speed control using
PWM.



The information, circuits, and exercises you have learned in this chapter will
help you to make informed decisions and make the necessary calculations
and measurements to select suitable components and create circuits that can
be used to switch devices on and off and other loads that demand more
current and higher voltages that can be sourced safely from a Raspberry Pi
pin.

Our approach to this chapter was to incrementally explore and build a relay
driver circuit, which provides you with a practical example of how and why
switching components are chained together to control higher power
components and/or loads. Also, we learned that optocouplers can be used to
electrically isolate circuits, which can be a useful and practical technique to
help us to isolate and protect our Raspberry Pi from accidental damage
should a circuit fail or be wired incorrectly.

In the next chapter, we turn our attention to different types of LEDs, buzzers,
and visual components we can use to signal or display information to users.

Questions
As we conclude, here is a list of questions for you to test your knowledge
regarding this chapter's material. You will find the answers in the
Assessments section of the book:

1. When it comes to controlling a transistor, how do MOSFET and BJT
differ? 

2. You are controlling a motor using a MOSFET, however, you switch off
the MOSFET (for example, making the GPIO pin low), but the motor
does not turn off promptly but instead spins down. Why?

3. You have selected a random MOSFET that you want to control from a
Raspberry Pi 3.3-volt GPIO but it does not work. What is some possible
cause of the problem?

4. Other than switching, what common feature do optocouplers and relays
share that transistors do not?

5. What is the difference between an active low and active high GPIO?



6. Why do we prefer a physical pull-down resistor for the MOSFET's Gate
leg over an in-code activated pull-down?

7. For a DC motor, what does the stall current represent?
8. For a DC motor, what is the difference between continuous and free

current?

Further reading
The following tutorial is a thorough introduction to transistors, their various
types, and applications:

https://www.electronics-tutorials.ws/category/transistor (start with the
MOSFET sections)

https://www.electronics-tutorials.ws/category/transistor


Lights, Indicators, and Displaying
Information

In the previous chapter, we explored and learned how to use an optocoupler,
transistor, and relay circuit and how these three components work together to
create a common relay control module. We also covered how to measure the
current usage of a load using a multimeter so that you can make an informed
decision on what method or component should be used to switch or control
an external load.

In this chapter, we will cover two alternative ways of making color with
RGB LEDs and create a simple application to monitor your Raspberry Pi's
CPU temperature and display the result on an OLED display. We will
conclude by seeing how we can combine PWM and buzzers to create sound.

After you complete this chapter, you will have the knowledge, experience,
and code examples that you can adapt to your own projects for those
situations you need to display information to users, make a noise, or simply
dazzle them with lights! Furthermore, what you learn will be adaptable to
other types of compatible displays and lighting devices if you wish to
explore these topics further.

We will cover the following topics in this chapter:

Making color with an RGB LED
Controlling a multi-color APA102 LED strip with SPI
Using an OLED display
Making sound with buzzers and PWM

Technical requirements
To perform the exercises in this chapter, you will need the following:

Raspberry Pi 4 Model B



Raspbian OS Buster (with desktop and recommended software)
A minimum of Python version 3.5

These requirements are what the code examples in this book are based on.
It's reasonable to expect that the code examples should work without
modification on a Raspberry Pi 3 Model B or a different version of Raspbian
OS as long as your Python version is 3.5 or higher.

You will find this chapter's source code in the chapter08 folder in the GitHub
repository available here: https://github.com/PacktPublishing/Practical-Python-Prog
ramming-for-IoT.

You will need to execute the following commands in a Terminal to set up a
virtual environment and install the Python libraries required for the code in
this chapter:

$ cd chapter08               # Change into this chapter's folder

$ python3 -m venv venv       # Create Python Virtual Environment

$ source venv/bin/activate   # Activate Python Virtual Environment

(venv) $ pip install pip --upgrade        # Upgrade pip

(venv) $ pip install -r requirements.txt  # Install dependent packages

The following dependencies are installed from requirements.txt:

PiGPIO: The PiGPIO GPIO library (https://pypi.org/project/pigpio
Pillow: Python Imaging Library (PIL) (https://pypi.org/project/Pillow)
Luma LED Matrix Library  (https://pypi.org/project/luma.led_matrix)
Luma OLED Library (https://pypi.org/project/luma.oled)

The electronic components we will need for this chapter's exercises include
the following:

1 x passive buzzer (rated for 5 volts)
1 x 1N4001 Diode
1 x 2N7000 MOSFET
2 x 15Ω,  200Ω, 1kΩ & 100kΩ Resistors
1 x RGB LED with a common cathode (datasheet: https://pdf1.alldatashe
et.com/datasheet-pdf/view/292386/P-TEC/PL16N-WDRGB190503.html)

https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://pypi.org/project/pigpio
https://pypi.org/project/Pillow
https://pypi.org/project/luma.led_matrix
https://pypi.org/project/luma.oled
https://pdf1.alldatasheet.com/datasheet-pdf/view/292386/P-TEC/PL16N-WDRGB190503.html


1 x SSD1306 OLED display (with an I2C interface) or another model
compatible with the Luma OLED Python library (datasheet (Driver
IC): https://www.alldatasheet.com/datasheet-pdf/pdf/1179026/ETC2/SSD1306.html)
1 x APA102 RGB LED strip (datasheet (Single APA102 Module): http
s://www.alldatasheet.com/datasheet-pdf/pdf/1150589/ETC2/APA102.html)
1 x logic level shifter/converter module
1 x external power supply (for example, a 3.3V/5V breadboard power
supply)

Let's make a start by looking at how we can use PWM to set the color of an
RGB LED.

Making color with an RGB LED
and PWM
In this section, we will learn how to use Pulse-Width Modulation
(PWM) together with an RGB LED to create different colors. As a reminder,
PWM is a technique to create a variable voltage, which when applied to an
LED and resistor pair can be used to change the brightness of an LED. We
first discussed PWM and used it to change the brightness of an LED back in
Chapter 2, Getting Started with Python and IoT. We then covered PWM in
greater depth in Chapter 5, Connecting your Raspberry Pi to the Physical
World.

An RGB LED is three single-color LEDs (red, green, and blue) in a single
package, as illustrated in Figure 8.1:

https://www.alldatasheet.com/datasheet-pdf/pdf/1179026/ETC2/SSD1306.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1150589/ETC2/APA102.html


Figure 8.1 – RGB LED varieties

You will notice that two types are shown:

Common Cathode: The red, green, and blue LEDs share a common
cathode leg, meaning that the common leg is what connects to the
negative or ground voltage source—cathode = negative.
Common Anode: The red, green, and blue LEDs share a
common anode leg, meaning that the common leg is what connects to
the positive voltage source—anode = positive.

The common leg will be the longest of the four legs. If the longest leg is closest to the flat
side of the LED's casing, it's a common cathode type. On the other hand, if the longest
leg is nearer the lip (and hence furthest from the flat side), it's a common anode type.

We learned previously in Chapter 5, Connecting Your Raspberry Pi to the
Physical World, how to set the brightness of a single LED using PWM, but
what happens if we vary the brightness of the three individual colors in an
RGB LED? We mix the individual colors to create new colors! Let's create a
circuit and start mixing.



Creating the RGB LED circuit

In this section, we will create a simple circuit to control an RGB LED, and
we will be using a common cathode RGB LED (that is, the three
individual LEDs share a common GND connection).

We will start by building the circuit as shown in Figure 8.2 on our
breadboard:

Figure 8.2 – Common cathode RGB LED schematic

Following is the accompanying breadboard layout for this schematic that we
are about to build:



Figure 8.3 – Common cathode RGB LED circuit

Here are the steps to follow, which match the numbered black circles in
Figure 8.3:

1. Start by placing the RGB LED into your breadboard, taking care to
orientate the LED regarding the positioning of its cathode leg.

2. Position the 200Ω resistor (R1). One end of this resistor connects to the
red leg of the LED.



3. Position the first 15Ω resistor (R2). One end of this resistor connects to
the blue leg of the LED.

4. Position the second 15Ω resistor (R3). One end of this resistor connects
to the green leg of the LED.

5. Connect a ground pin on your Raspberry Pi to the negative power rail.

6. Connect GPIO 16 on your Raspberry Pi to the other end of the 200Ω
resistor (R1) you placed at step 2.

7. Connect the cathode leg of the RGB LED to the negative power rail.
8. Connect GPIO 20 on your Raspberry Pi to the other end of the 15Ω

resistor (R2) you placed at step 3.
9. Connect GPIO 21 on your Raspberry Pi to the other end of the 15Ω

resistor (R3) you placed at step 4.

Before we test our RGB LED circuit, let's briefly recap how we arrived at
the 200Ω and 15Ω resistors in this circuit. The 200Ω resistor (R1) was
derived using the same process we covered in Chapter 6, Electronics 101 for
the Software Engineer. The 15Ω resistors for R2 and R3 are derived using
the same process, with the difference being that the typical forward
voltage used in the calculations for the blue and green LED was 3.2-volts. If
you study the sample datasheet, you will notice that the forward voltage for
the blue and green LEDs lists a maximum forward voltage of 4.0 volts. Even
at the typical value of 3.2 volts, we are very close to the 3.3 volts of a
Raspberry Pi GPIO pin. If you are unlucky to get an RGB LED needing
more than 3.3 volts for its blue or green LED, it will not work—though I
have never come across one...yet.

Now we are ready to test our RGB LED.

Running and exploring the RGB LED code

Now that you have your circuit ready, let's run our example code. Our
example will light up the LED and make it alternate different colors. Here
are the steps to follow:

1. Run the code in the chapter08/rgbled_common_cathode.py file and you should
observe the RGB LED cycling colors. Take note of the first three



colors, which should be red, green, and then blue.

To use a common anode RGB LED, it needs to be wired differently than shown in Figure
8.2—the common anode leg must go to the +3.3V pin on your Raspberry Pi, while the
GPIO connections remain the same. The other change is in code where we need to invert
the PWM signals—you will find a file called rgbled_common_anode.py in the chapter08 folder
with the differences commented.

2. If your first three colors are not red, green, and then blue, your RGB
LED may have its legs in a different order than the RGB LED's
pictured in Figure 8.1 and the circuit in Figure 8.2. What you will need
to do is change the GPIO pin numbering in the code (see the following
code snippets) and re-run the code until the color order is correct.

3. After the red, green, and then blue cycle, the RGB LED will animate a
rainbow of colors before the program completes. 

Let's discuss the interesting sections of the code and see how it works:

In line (1), we are importing getrgb from the PIL.ImageColor module. getrgb
provides us with a convenient way to convert common color names such as
red or hex values such as #FF0000 into their RGB component values such as
(255, 0, 0):

from time import sleep

import pigpio

from PIL.ImageColor import getrgb    # (1)

GPIO_RED = 16

GPIO_GREEN = 20

GPIO_BLUE = 21

pi.set_PWM_range(GPIO_RED, 255)      # (2)

pi.set_PWM_frequency(GPIO_RED, 8000)

# ... truncated ... 

Starting at line (2), we explicitly configure PWM for each of the GPIO pins
(the duty cycle range of 255 and frequency of 8,000 are the PiGPIO
defaults). The PWM duty cycle range of 0 to 255 maps perfectly into the
RGB component color value range of 0...255, which we will see shortly is
how we set the individual brightness of each color LED.

In the following code, in line (3), we have the set_color() definition, which is
responsible for setting the color of our RGB LED. The color parameter can



be either a common color name such as yellow, a HEX value such as #FFFF00,
or one of the many formats that getrgb() can parse (see
the rgbled_common_cathode.py source file for a list of common formats):

def set_color(color):                                 # (3)

    rgb = getrgb(color)                               

    print("LED is {} ({})".format(color, rgb))

    pi.set_PWM_dutycycle(GPIO_RED,   rgb[0])          # (4)

    pi.set_PWM_dutycycle(GPIO_GREEN, rgb[1])

    pi.set_PWM_dutycycle(GPIO_BLUE,  rgb[2])

In line (4), we see how to use PWM with the individual GPIO pins to set the
RBG LED's color. Continuing with yellow as our example, we see the
following:

GPIO_RED is set to a duty cycle of 0.
GPIO_GREEN is set to a duty cycle of 255.
GPIO_BLUE is set to a duty cycle of 255.

A duty cycle value for green and blue of 255 means that these LEDs are
fully on and, as we know, mixing green and blue makes yellow.

As you browse the source file, you will encounter another two functions at
lines (6) and (7):

def color_cycle(colors=("red", "green", "blue"), delay_secs=1):   # (6)

    # ...truncated...

def rainbow_example(loops=1, delay_secs=0.01):                    # (7)

    # ...truncated...

Both of these methods delegate to set_color(). color_cycle() loops through the
list of colors provided as its color parameter, while rainbow_example() generates
and loops through a range of colors to produce the rainbow sequence. These
functions are what generated the light sequences when we ran the code in
step 1.

Our RGB LED circuit comes with limitations and drawbacks:

Firstly, we need three GPIO pins per RGB LED.
Secondly, we're restricting the current to 8mA with the resistors so we
cannot achieve maximum potential brightness of the individual LEDs



(we would need ~20mA for full brightness).

While we could introduce transistors (or an appropriate multi-channel LED
driver IC) to increase the current, our circuit would quickly become
cumbersome! Luckily, there is another way we can create color with LEDs,
and that is with addressable LEDs, which we'll look at next.

Controlling a multi-color APA102
LED strip with SPI
The APA102 is an addressable multi-color (RGB) LED that is controlled
using a Serial Peripheral Interface (SPI). In simplistic terms, we send
instructions to the LED asking it what color to display rather than
individually controlling each of the three red-green-blue legs of the LED
using PWM as we did in the previous example.

If you need a quick refresher on SPI, we covered it back in Chapter 5,
Connecting Your Raspberry Pi to the Physical World. We will also discuss
SPI further the context of the APA102, the Raspberry Pi, and Python after
we explore APA102 specific code shortly.

APA102 LEDs can also be connected or chained together to create LED
strips or LED matrices to create dynamic and multi-LED lighting and
display solutions. Irrespective of how the LEDs are arranged, we control
them using a common technique where we send multiple sets of instructions
to a chain of APA102 LEDs. Each individual LED consumes one instruction
and passes the rest on to be consumed by upstream LEDs. We will see this
idea in action as we work with an APA102 LED strip shortly.

APA102 LEDs also go by the name Super LEDs, DotStar LEDs, and sometimes Next
Generation NeoPixels. There is also another addressable LED, the WS2812, also known
as a NeoPixel. While similar in principle and operation, WS2812 RGB LEDs are not
compatible with the APA102.

Let's create a circuit and run the code to control our APA102 LED strip.



Creating the APA102 circuit

In this section, we will create our APA102 circuit, as shown in the following
diagram. We will do this on our breadboard in two parts:

Figure 8.4 – APA102 LED strip circuit schematic

Let's get started on the first part, which will be to place the components and
wire up the low-voltage side of a logic level converter:





Figure 8.5 – APA102 LED circuit (part 1 of 2)

Here are the steps to follow. The step numbers match the numbered black
circles in Figure 8.5:

1. Place the logic level converter (logic level shifter) into the
breadboard, positioning the low-voltage side toward your Raspberry Pi.
Different logic level converters may have different labeling, however, it
should be clear which is the low-voltage side. In our illustration, one
side has an LV (Low Voltage) terminal while the other has an HV
(High Voltage) terminal, which distinguishes the sides.

2. Connect the negative rails on the left-hand side and right-hand side
power rails.

3. Connect a 3.3-volt pin on your Raspberry Pi to the positive rail of the
left-hand side power rail.

4. Connect the LV terminal on the logic level converter into the positive
rail of the left-hand side power rail.

5. Connect the MOSI (Master Out Slave In) pin on your Raspberry Pi to
the A2 terminal on the logic level converter.

6. Connect the SLCK (Serial Clock) pin on your Raspberry Pi to the A1
terminal on the logic level converter.

7. Connect the GND terminal on the logic level converter to the negative
rail on the left-hand side power rail.

8. Connect the negative rail on the left-hand side power rail to a GND pin
on your Raspberry Pi.

Now that we have wired the low-voltage side of the logic level converter to
our Raspberry Pi, next we will wire the high-voltage side to the APA102
LED strip. As a reminder, Raspberry Pi GPIO pins operate at 3.3 volts
(hence it's the low voltage) while the APA102 operates at 5 volts (hence it's
the high voltage):



Figure 8.6 – APA102 LED circuit (part 2 of 2)

Here are the steps to follow for the second part of our build. The step
numbers match the numbered black circles in Figure 8.6:

1. Connect the HV terminal of the logic level converter to the positive rail
of the right-hand side power rail.

2. Place a jumper wire from terminal B2 to an unused row on your
breadboard (in the illustration, this is shown at hole G16).

3. Place another jumper wire from terminal B1 to an unused row on your
breadboard (in the illustration, this is shown at hole H14).

4. Connect the GND terminal on the high-voltage side of the logic level
converter to the negative rail of the right-hand side power rail.

5. Connect the positive output of your power supply to the positive rail of
the right-hand side power rail.

6. Connect the negative output of your power supply to the negative rail of
the right-hand side power rail.

7. Connect the VCC terminal or wire of your APA102 LED strip to the
positive rail of the right-hand side power rail.



Your APA102 must be connected the correct way around. You will notice the arrows on
the APA102 LED strip shown in Figure 8.4. These arrows indicate the direction of the
data flow. Make sure your APA102 LED strip arrows match the illustration (that is, the
arrows are pointing away from the breadboard).
If your APA102 does not have the arrows, look at the naming of the terminals. One side
of an LED strip may have CI/DI (I = Input), while the other side has DO/CO (O =
Output). It's the Input side we need to connect to the logic level converter.

8. Connect the CI (Clock Input) terminal or wire of your APA102 LED
strip to the wire you placed at step 3 that connects back to the B1
terminal of the logic level converter.

9. Connect the DI (Data Input) terminal or wire of your APA102 LED
strip to the wire you placed at step 2 that connects back to the B2
terminal of the logic level converter.

10. Finally, connect the GND terminal or wire of your APA102 LED strip
to the negative rail of the right-hand side power rail.

Well done! You have now completed your APA102 LED strip circuit. As you
completed this circuit build, you will have noticed that we are using a logic
level converter. This is because the APA102 requires 5-volt logic to operate
properly. The APA102 datasheet explicitly mentions the minimum logic
voltage to be 0.7 VDD, which is 0.7 x 5 volts = 3.5 volts, which is higher
than the Raspberry Pi's 3.3-volt logic-level. 

If you need a refresher on logic-levels and logic-level conversion, refer back to Chapter 6,
Electronics 101 for the Software Engineer.

Let's consider the situation (in case you were wondering) that 3.3 volts is
only slightly less than 3.5 volts—surely, that's close enough? You can try and
control an APA102 with 3.3-volts, and it may give you some level of
success. However, you may also experience some random effects and
confusion—for example, random LEDs not turning on or off as expected,
flickering LEDs, or LEDs displaying with the wrong color. Unfortunately,
the APA102 is one of the 5-volt logic devices that are not 3.3-volt
compatible, so we must take the extra step and use a logic level converter to
meet its 3.5-volt minimum logic-level requirements.

Now that you have built your APA102 circuit, next we will discuss the
considerations we need to think about to power this circuit.



Powering the APA102 circuit

In Chapter 7, Turning Things On and Off, we discussed the importance of
knowing the current requirements of a "load" that you are using. Let's apply
that learning to our APA102 LED strip so we can power it correctly. Our
example is assuming a LED strip containing 60 LEDs, however, you will
need to adjust the calculations based on the number of LEDs on your strip.

By the way of example, we have the following:

An APA102 LED strip with 60 LEDs.
Each LED uses (on average) a maximum of 25mA (from the datasheet
and confirmed by measurement).
The LED strip consumes approximately 15mA when idle (no LED is
lit).

A single RGB LED uses its maximum current when it is set to the color white, which is
when each individual LED (red, green, and blue) are at their full brightness.

Using the preceding values, we can calculate our expected maximum current
requirement for 60 LEDs, which is just over 1.5 amps:

If we work in the assumption that we are using a breadboard power supply,
then if we conservatively assume that our breadboard power suppler can
only supply around 700mA maximum, we cannot realistically turn on all
LEDs on a 60 LED strip to full white. If we do, then (depending on the
power supply) it could turn off if its internal overload protection kicks in, it
might go up in a puff of smoke, or it might limit its output current, which we
may observe as the LEDs looking reddish rather than white.

Let's work backward to work out the safe number of LEDs that we can
power from a 700mA power supply:



If we then subtract 2 LEDs (50mA) as a small safety buffer, we get 25
LEDs. Remember this number (or the number you calculate) as we will need
it next when we run our example code.

After calculating the number of safe LEDs you can use with your power
supply, we are now ready to configure and run our Python example.

Configuring and running the APA102 LED strip code

Now that you have your circuit ready and our LED strip's expected current
usage, let's configure and light up our LED strip:

1. Edit the chapter08/apa102_led_strip.py file and look for the following line
near the top of the file. Adjust the number to be the number of safe
LEDs you calculated previously, or the number of LEDs on your strip if
it had a suitably capable power supply:

NUM_LEDS = 60     # (2)

2. Save your edits and run the code. If everything is connected correctly,
you should observe the LEDs on the strip cycle through the colors red,
green, and blue and then perform a few different light sequences.

If your LED strip is not working, check out the APA102 LED strip troubleshooting tips
later in the section.

If your strip does not show red, green, and blue in that order, then you
would need to adjust code to set the correct order—I'll show you where in
the code you can adjust the LED ordering when we come to that section of
code shortly.

With our safe number of LEDs now configured in code, let's walk through
the code to see how it works.

APA102 LED strip code walkthrough

Starting at line (1) in the following code, we have the imports. We will be
using a Python deque collection instance (I'll just refer to is as an array for



simplicity) to model in-memory the APA102 LED strip—we will build up
and manipulate the order of colors we want each individual LED on to
display in this array before applying it to the LED strip. We then import the
getrgb function from the PIL library for working with color formats (as we
did in the preceding RGB LED example):

# ...truncated...

from collections import deque                                   # (1)

from PIL.ImageColor import getrgb

from luma.core.render import canvas

from luma.led_matrix.device import apa102

from luma.core.interface.serial import spi, bitbang

Lastly, the three luma imports are for the APA102 LED strip control. Luma is
a mature high-level library for working with a range of common display
devices using Python. It has support for LCDs, LED strips and matrices, and
much more, including OLED displays, which we will cover later in this
chapter.

We can only scratch the surface of what can be done with the Luma library
in this chapter, so I encourage you to explore its documentation and range of
examples—you'll find links in the Further reading section at the end of this
chapter.

Next, we come to line (3) in the following code, where we assign color_buffer
to an instance of deque that is initialized with the same number of elements as
there are LEDs in our strip. Each element defaults to black (that is, the LED
is off):

# ...truncated...

color_buffer = deque(['black']*NUM_LEDS, maxlen=NUM_LEDS)      # (3)

In line (4) in the following code, we start to create our software interface to
the APA102. Here, we are creating a spi() instance representing the default
hardware SPI0 interface on the Raspberry Pi. To use this interface, your
APA102 must be connected to the SPI pins on your Raspberry Pi, which are
as follows:

DI connected to MOSI
CI connected to SCLK



In the following code snippet port=0 and device=0 relate to the SPI0 interface:

# ...truncated...

serial = spi(port=0, device=0, bus_speed_hz=2000000)           # (4)

The bus_speed_hz parameter sets the speed of the SPI interface and, for our
examples, we lower it from its default value of 8,000,000 to 2,000,000 just
to ensure that your logic level converter will work. Not all logic level
converters are the same, and they will have a maximum speed at which they
can convert logic levels. If the SPI interface operates faster than the logic
level converter can convert, our circuit will not work.

In line (5) in the following code—which is commented out—we have a
software alternative to hardware SPI known as big-banging, which will work
on any GPIO pins at the expense of speed. It's similar to the software versus
hardware PWM trade-off we discussed back in Chapter 5, Connecting Your
Raspberry Pi to the Physical World:

# ...truncated...

# serial = bitbang(SCLK=13, SDA=6)                             # (5)

# ...truncated...

device = apa102(serial_interface=serial, cascaded=NUM_LEDS)    # (6)

In line (6) in the preceding code, we created an instance of the apa102 class
specifying the serial instance we just created, and the number of LEDs in our
strip. From this point forward in code, to interact with our APA102 LED
strip, we use the device instance.

To initialize our LED strip, in line (7) in the following code, we call
device.clear()  and set the default global contrast to 128 (so, half brightness).
You can adjust this level to find a brightness that you are comfortable with,
remembering that more contrast/brightness means more current usage. Note
that previously when we calculated the number of safe LEDs, the 25mA per
LED used in the calculations assumed maximum brightness (that is, 255):

device.clear()                                                   # (7)

contrast_level = 128 # 0 (off) to 255 (maximum brightness)

device.contrast(contrast_level)



In line (8) in the following code, we have the set_color() function. We use
this function to set individual or all elements to a specified color in
the color_buffer array. This is how we build up in-memory the color
arrangements we want our APA102 LED strip to display:

def set_color(color='black', index=-1):                          # (8)

    if index == -1:

        global color_buffer

        color_buffer = deque([color]*NUM_LEDS, maxlen=NUM_LEDS)

    else:

        color_buffer[index] = color

Now, we will jump to line (12) in the following code block to the update()
function. This function loops through color_buffer and, using the Luma device
instance representing our APA102, it feeds the device the colors to display
using draw.point((led_pos, 0), fill=color). This is the magic of the Luma library
—it shields us from the lower level APA102 and SPI data and hardware
protocols by giving us a very simple software interface to use.

If you want to learn more about lower level SPI use and protocols, then APA102 is a
good place to start. Start by reading the APA102 datasheet for its data protocol, then
find a simple APA102 module on pypi.org or GitHub and review its code. There is also an
APA102 example that can be found on the PiGPIO website—a link is included in the
Further reading section.

It's important to remember that update() needs to be called after you make
changes to color_buffer:

def update():                                                   # (12)

    with canvas(device) as draw:

        for led_pos in range(0, len(color_buffer)):

            color = color_buffer[led_pos]

            ## If your LED strip's colors are are not in the expected

            ## order, uncomment the following lines and adjust the indexes

            ## in the line color = (rgb[0], rgb[1], rgb[2])

            # rgb = getrgb(color)

            # color = (rgb[0], rgb[1], rgb[2])

            # if len(rgb) == 4:

            #     color += (rgb[3],)  # Add in Alpha

            draw.point((led_pos, 0), fill=color)

If, for some reason, you find your LED strip colors are not in the standard
red, green, and blue order then the preceding commented-out section of code
can be used to change the color order. I've never encountered a non-standard

http://pypi.org/


APA102, but I have read about addressable RGB LEDs having non-standard
ordering, so I thought I'd just drop that bit of code in, just in case.

Moving on to lines (9), (10), and (11), we have three functions that simply
manipulate color_buffer:

def push_color(color):                                       # (9)

    color_buffer.appendleft(color)

def set_pattern(colors=('green', 'blue', 'red')):           # (10)     

    range(0, int(ceil(float(NUM_LEDS)/float(len(colors))))):

        for color in colors:

            push_color(color)

def rotate_colors(count=1):                                 # (11)

    color_buffer.rotate(count)

push_color(color) in line (9) pushes a new color into color_buffer at index 0
while set_pattern() in line (10) fills color_buffer with a repeating color pattern
sequence. rotate_colors() in line (11) rotates the colors in color_buffer (and
wraps them around—the last one becomes for the first one). You can rotate
backward by using a count value < 0.

Finally, toward the end of the source code, we have the following functions
that provide the examples you saw when you run the file. These functions
use combinations of the functions discussed previously to control the LED
strip:

cycle_colors(colors=("red", "green", "blue"), delay_secs=1)

pattern_example()

rotate_example(colors=("red", "green", "blue"), rounds=2, delay_secs=0.02)

rainbow_example(rounds=1, delay_secs=0.01)

We will complete our coverage of the APA102 with a few concluding notes
on its use of the SPI interface.

Discussion of APA102 and the SPI interface

If you cast your mind back to Chapter 5, Connecting Your Raspberry Pi to the
Physical World, where we discussed Serial Peripheral Interface (SPI), you
may remember that we mentioned it uses four wires for data transfer.



However, if you consider our circuit in Figure 8.6, we're only using two
wires (DI and CI), not four. What's going on?

Here is the SPI mapping for the APA102:

Master-Out-Slave-In (MOSI) on your Raspberry Pi connects to Data
In (DI) on the APA102. Here, your Raspberry Pi is the master sending
data to the slave APA102 LEDs on the strip.
Master-In-Slave-Out (MISO) is not connected because the APA102
does not need to send data back to the Raspberry Pi.
SCLK on your Raspberry Pi connect to the Clock In (CI) on the
APA102.
 Client Enable/Slave Select (CE/SS) is not connected.

The last line CE/SS of importance and worthy of further discussion. A
CE/SS channel is used by a master device to tell a specific slave device that
it's about to receive data. It's this mechanism that allows a single SPI master
to control multiple SPI slaves.

But, we're not (and cannot) use CE/SS it with the APA102 because we have
nowhere to connect the CE/SS pins to. The implication of this is that the
APA102 is always listing for instructions from a master, effectively hogging
the SPI channel.

If we are using an APA102 (or any device that has no CE/SS), then we
cannot connect more than one SPI device to a master's hardware SPI, unless
we take extra steps. Some of the options are as follows:

Use big-banging on generic GPIO pins if the performance reduction
does not have adverse effects.
Enable hardware SPI1 on your Raspberry Pi. It's not enabled by default
and requires editing /boot/config.txt. You'll find instructions and tips if
you search the web for Raspberry Pi enable SPI1.
Find a logic level converter that includes an enable pin and write code
to manually control this pin as a proxy CE/SS.

We will conclude this section on the APA102 with a few troubleshooting
tips.



APA102 LED strip troubleshooting tips

If you cannot get your APA102 to light up or if you find that random LEDs
are not turning on or off or they are displaying unexpected colors or random
flickers, try the following:

The APA102 needs 5-volt logic: Make sure you are using a logic level
converter and that is connected the correct way around—HV to 5 volts
and LV to 3.3 volts.
Ensure that the DI/CI side of the APA102 is connected to the logic level
converter.
Make sure your power source can supply enough current. As an
example, under-supply of current or voltage can make white look more
like red.
Make sure the ground of your power supply is connected to a ground
pin on your Raspberry Pi.
If you are using big banging, move to hardware SPI.
If using the hardware SPI (that is, creating an instance of the spi()
class), try the following:

If you are receiving the error SPI device not found, make sure SPI
has been enabled in the Raspbian OS. We covered this in Chapter 1,
Setting Up Your Development Environment.
If you have been using GPIO 8,9, 10, or 11 previously for general
I/O, then either disable and re-enable the SPI interface as per the
preceding point or reboot your Raspberry Pi to reset the hardware
SPI interface.
Try lowering the SPI bus speed in case your logic level converter
cannot keep up—that is, it cannot convert 3.3-volt to 5-volt signals
as fast as the SPI interface is producing them (hint: lower
the bus_speed_hz parameter in serial = spi(port=0, device=0,
bus_speed_hz=2000000) to 1,000,000 or 500,000).
Connect the APA102's DI and CI directly to SDA and SCLK on
the Raspberry Pi. The goal here is to bypass the logic level
converter to rule it out as the problem.

Well done! This was a lengthy and detailed section on the APA102. We
covered a lot of concepts in addition to the APA102 itself, including how to



calculate the power requirements of a LED strip and an introduction to the
Luma library, which can be used to control a host of different lighting and
display devices besides the APA102. Then, we concluded with practical
troubleshooting tips in case your APA102 circuit, setup, or code did not
work on the first go.

All of this knowledge and experience will be adaptable to similar lighting
projects you undertake and SPI-based projects in general. In particular, it
will be a helpful reference to calculate the power requirements of lighting
projects and troubleshoot circuits and code when they do not work. It also
provides the basic foundations that we will be building on in the next section
where we look at how to interface an OLED display with our Raspberry Pi.

Using an OLED display
An OLED or Organic LED display is a type of technology used to make
screens. Our example will be using an SSD1306, which is a monochrome
128x64 pixel display, however, the information will apply to other OLED
displays too. 

Our sample program will read your Raspberry Pi's CPU temperature and
display it on the OLED display together with a thermometer icon. We will be
assuming the OLED will connect using an I2C interface, however, an SPI
interface device should also be compatible if you use an spi() instance (like
in the APA102 example) for the serial object. The ability to change the
interacting method used by the Luma library means you can reuse existing
code with compatible display devices with minimal code changes.

We will commence by connecting the OLED display to the Raspberry Pi and
verifying that it is connected.

Connecting the OLED display

Let's connect your OLED display to your Raspberry Pi, as shown in Figure
8.7:



Figure 8.7 – I2C OLED display circuit
IMPORTANT NOTE ON POWERING YOUR OLED: Our circuit, shown in Figure
8.6, and the associated discussion uses a 5-volt power supply. If you consult the
SSD1306 OLED datasheet mentioned at the beginning of this chapter, you will discover
that it mentions a minimum supply voltage of 7 volts. Furthermore, you will find other
sources and SSD1306 OLED modules that indicate different voltage
requirements. Please consult the documentation or place of purchase to obtain the
correct operating voltage for your OLED and adjust the supply voltage as required
(steps 7 and 8 in the following list).

You can connect the OLED with the following steps, which correspond to
the numbered black circles in Figure 8.7:

1. Connect the negative rails on the left-hand side and right-hand side
power rails.

2. Connect the SDA1 (Data) pin of your Raspberry Pi into a vacant row
on your breadboard.

3. Connect the SDA (Data) terminal or wire of your OLED display into
the same row use used for step 2.

4. Connect the SCL1 (Clock) pin of your Raspberry Pi into a vacant row
on your breadboard.



5. Connect the SCL (Clock) terminal or wire of your OLED display into
the same row use used for step 4.

6. Connect a GND Pin on your Raspberry Pi to the negative rail of the
left-hand side power rail.

7. Connect the positive output of a 5-volt power supply to the positive rail
of the right-hand side power rail.

8. Connect the negative output of a 5-volt power supply to the negative
rail of the right-hand side power rail.

9. Connect the GND terminal or wire of your OLED display to the
negative rail of the right-hand side power rail.

10. Connect the VCC terminal or wire of your OLED display (it might also
be named VDD, Vin, V+, or something similar indicating a voltage
input) to the positive rail of the right-hand side power rail.

Good job! This completes our OLED circuit. As you can see, we are
powering the OLED from a 5-volt power supply, however, the SDA
(Data)/SLC (Clock) channels are connected directly to your Raspberry Pi.
Unlike the APA102 LED strip we used in the previous section, the SSD1306
OLED is 3.3-volt logic compatible, hence, we do not need a logic level
converter to convert logic level voltages on the clock and data channels.

Let's briefly consider the current requirements for the SSD1306 OLED.
My testing resulted in the following current measurements:

Black screen: ~3mA
White screen (every pixel on): ~27mA

At a maximum current usage of ~27mA, you can try connecting the +5V to
the Raspberry Pi's 5-volt pin, but remember this will take reserve current
away from your Raspberry Pi (and it may reset when you run the code if
your Raspberry Pi's power supply is not adequate).

If you need a recap on current measurement using a digital multimeter, please refer to Cha
pter 7, Turning Things On and Off.

With your OLED connected to your Raspberry Pi's SDA and SCL pins next,
we will verify that it has been detected by your Raspberry Pi using the
i2cdetect utility.



Verifying whether the OLED display is connected

Previously, in Chapter 5, Connecting Your Raspberry Pi to the Physical World,
we used the i2cdetect command-line tool to check whether an I2C device was
connected and to verify its I2C address. Check that your Raspberry Pi can
see your OLED display by running the following in a Terminal:

$ i2cdetect -y 1

If your OLED is connected, you will see the following output, which tells us
that the OLED was detected and has the hex address, 0x3C:

# ...truncated...

30: -- -- -- -- -- -- -- -- -- -- -- -- 3c -- -- -- 

# ...truncated...

If your address is different, that's okay, we just need to adjust the address in
code which we will do next.

Configuring and running the OLED example

The code we are about to explore is contained in
the chapter08/oled_cpu_temp.py file. Please review this file to get an overall view
of what it contains before continuing:

1. If the OLED I2C address you obtained in the preceding was different
to 0x3C, find the following line in the source code and update the address
parameter to match your OLED I2C address:

serial = i2c(port=1, address=0x3C)

2. Run the program, and you should observe the CPU temperature and a
thermometer icon drawn on the OLED display.

Once you have configured your OLED display address in code and
confirmed the example works on your OLED, we are ready to review the
code and learn how it works.

OLED code walkthrough



Commencing with the imports, in line (1), we import classes from the PIL
(Pillow) module, which we use to create the image we want to render on the
OLED display. We also import several other classes from the Luma module
related to our SSD1306 OLED and its I2C interface (SPI is also imported for
reference).

We see how to create an I2C instance in line (2) representing the interface
that our OLED is connected to. Commented out is an SPI alternative. In line
(3), we create an instance of ssd1306 that represents our OLED display and
assign it to the device variable. If you are using a different OLED display than
the SSD1306, you will need to identify and adjust the ssd1306 import line, and
the device instance created in line (3):

from PIL import Image, ImageDraw, ImageFont         # (1)

from luma.core.interface.serial import i2c, spi

from luma.core.render import canvas

from luma.oled.device import ssd1306

#...truncated...

# OLED display is using I2C at address 0x3C

serial = i2c(port=1, address=0x3C)                  # (2)

#serial = spi(port=0, device=0)

device = ssd1306(serial)                            # (3)

device.clear()

print("Screen Dimensions (WxH):", device.size)

In line (4), we encounter the get_cpu_temp() function, which calls a command-
line utility to retrieve your Raspberry Pi's CPU temperature before parsing
and returning the result that we will use shortly to construct our display
image:

def get_cpu_temp():     # (4)

    temp = os.popen("vcgencmd measure_temp").readline() # Eg 62.5'C

    data = temp.strip().upper().replace("TEMP=", "").split("'")

    data[0] = float(data[0])

    if data[1] == 'F':  # To Celsius just in case it ever returns Fahrenheit

        data[0] = (data[0] - 32) * 5/9

        data[1] = 'C'

    return (data[0], data[1])  # Eg (62.5, 'C')

In the following code in line (5), we define temperature thresholds that
influence the icon we show on our OLED display. We will also use the high



threshold to make the OLED display blink to help to create a visual
attention-grabber.

In line (6), we load in three thermometer images and scale them down
starting at line (7) to a size that is workable with the 128x64 pixel
dimensions of our SSD1306 OLED:

# Temperature thresholds used to switch thermometer icons

temp_low_threshold = 60   # degrees Celsius                     # (5)

temp_high_threshold = 85  # degrees Celsius

# Thermometer icons

image_high = Image.open("temp_high.png")                        # (6)

image_med  = Image.open("temp_med.png")

image_low  = Image.open("temp_low.png")

# Scale thermometer icons (WxH)

aspect_ratio = image_low.size[0] / image_low.size[1]            # (7)

height = 50

width = int(height * aspect_ratio)

image_high = image_high.resize((width, height))

image_med  = image_med.resize((width, height))

image_low  = image_low.resize((width, height))

Next, we define two variables starting at line (8) in the following. refresh_secs
is the rate at which we check the CPU temperature and update the OLED
display while high_alert is used to flag a breach of the maximum temperature
threshold and start the screen blinking:

refresh_secs = 0.5   # Display refresh rate                           #(8)

high_alert = False # Used for screen blinking when high temperature

try:

    while True:

        current_temp = get_cpu_temp()

        temp_image = None

        canvas = Image.new("RGB", device.size, "black")              # (9)

        draw = ImageDraw.Draw(canvas)                                # (10)

        draw.rectangle(((0,0), 

                   (device.size[0]-1, device.size[1]-1)), 

                   outline="white")

In the while loop, in line (9), we see the use of the PIL module. Here, we are
creating a blank image using the same dimensions as the OLED device (that
is, 128x64 for the SSD1306) and storing it in the canvas variable. In
subsequent code, we manipulate this in-memory canvas image before
sending it to the SSD1306 for rendering.



The draw instance created in line (10) is a PIL helper class that we use for
drawing on the canvas. We use this instance for placing a bounding rectangle
around the canvas and will use it later to add text to the canvas.
The draw instance can also be used to draw many other shapes including
lines, arcs, and circles. A link to the PIL API documentation can be found in
the Further reading section.

The block of code starting at line (11) in the following is what will make our
OLED display blink when high_alert is True:

        if high_alert:                                     # (11)

            device.display(canvas.convert(device.mode))

            high_alert = False

            sleep(refresh_secs)

            continue

Starting at line (12), we compare the temperature reading we obtained from
get_cpu_temp() to the threshold values defined earlier. Depending on the result,
we change the thermometer image that will be shown, and for a high
threshold breach, we set high_alert = True. Setting high_alert to True will cause
the OLED display to blink on the next loop iteration:

        if current_temp[0] < temp_low_threshold:           # (12)

            temp_image = image_low

            high_alert = False

        elif current_temp[0] > temp_high_threshold:

            temp_image = image_high

            high_alert = True

        else:

            temp_image = image_med

            high_alert = False

We start constructing our display starting at line (13) in the following. We
calculate image_xy to be a point at which our thermometer image would be
centered on the display and then offset that point using the image_x_offset
and image_x_offset variables to move the image into the position we want it
rendered.

In line (14), we then paste our thermometer image onto the canvas:

# Temperature Icon 

image_x_offset = -40                    # (13)

image_y_offset = +7



image_xy = (((device.width - temp_image.size[0]) // 2) + 

        image_x_offset, ((device.height - temp_image.size[1]) // 2) 

        + image_y_offset)

canvas.paste(temp_image, image_xy)      # (14)

Moving on to line (15) in the following code block, we create the text we
want to display on our OLED screen and use the same technique as for the
image to position the text on the canvas in line (17). Notice the use
of draw.textsize() to obtain the pixel dimensions of the text.

In line (16), we set font = None to use a default system font for the example
because I cannot be entirely sure what fonts you have available on your
Raspberry Pi. The line after line (16) that is commented out shows an
example of using a custom font.

Run the fc-list command in a Terminal to see a list of fonts installed on your Raspberry
Pi.

Finally, in line (18), we draw the text on the canvas:

# Temperature Text (\u00b0 is a 'degree' symbol)                 # (15)

text = "{}\u00b0{}".format(current_temp[0], current_temp[1]) # Eg 43'C

font = None # Use a default font.                                # (16)

# font = ImageFont.truetype(font="Lato-Semibold.ttf", size=20) 

text_size = draw.textsize(text, font=font)                       # (17)

text_x_offset = +15                                      

text_y_offset = 0

text_xy = (((device.width - text_size[0]) // 2) + text_x_offset, 

((device.height -  text_size[1]) // 2) + text_y_offset)

draw.text(text_xy, text, fill="white", font=font)                # (18)

We have now reached the tail-end of the while loop. In line (19) in the
following code, we use the device instance that represents the SSD1306
OLED display to display canvas. The canvas.convert(device.mode) call converts
the canvas image that we created into a format usable by the SSD1306:

# Render display with canvas

device.display(canvas.convert(device.mode))        # (19)

sleep(refresh_secs)

Before we complete our exploration of OLEDs, I want to point you to more
examples. The Luma library contains an extensive range of examples
covering many aspects of using an OLED display. A link to the examples
can be found in Further reading.



OLED displays are low cost, small in size, and light on power consumption,
so you frequently find them used in battery-operated devices. If you want to
explore other display options for your Raspberry Pi, you might like to
investigate the range of Raspberry Pi TFT displays that are available (just
search for that term on sites such as eBay.com or Banggood.com). These are
full-color mini-monitors for your Raspberry Pi, and there are even touch-
screen options available.

This now concludes our coverage of lighting and displays with our
Raspberry Pi and Python. The knowledge you have learned so far will
enable you to use and correctly power your own simple LED lighting
projects and leverage a range of OLED displays for those projects where you
wish to display textual and graphical information to users.

To conclude the exercises for this chapter, next, we will revisit Pulse-
Width-Modulation (PWM) briefly and see how we can use it to generate
sound.

Making sound with buzzers and
PWM
In the final section of this chapter, we will walk through an example of how
to make simple sound and music with PWM. Our sample program is going
to play a musical scale on the buzzer, and we will be using a music score
format called Ring Tone Text Transfer Language (RTTTL), which was
developed by Nokia in the pre-smartphone era for creating ringtones. As we
learn, we can use a simple Python library to parse an RTTTL music score
and turn its notes into a PWM frequency and duration that can then be used
to associate a buzzer to create an auditable tune.

To make a sound with PWM, we need a form of a speaker, and we will be
using what is known as a passive buzzer. Buzzers come in two basic forms:



Active buzzers: These buzzers contain an internal oscillator that
generates a single set tone. All you need to do us apply a DC voltage to
an active buzzer and it will make a noise.
Passive buzzers: These do not contain any internal smarts to make
them work, so the oscillating must be done by the controlling device.
The upside of this is that we can set and change the tone as we wish,
and we can achieve this using PWM.

Now that we understand a little about how to make sound with buzzers, let's
continue and create our sound-making circuit.

Building the RTTTL circuit

In this section, we will be building a circuit to drive a passive buzzer. This
circuit, shown in Figure 8.8 is very similar to the MOSFET circuit that we
covered in Chapter 7, Turning Things On and Off, only this time with a buzzer
connected as the load:

Figure 8.8 – Buzzer driver circuit Schematic



We will start our circuit build by placing the components onto our
breadboard:

Figure 8.9 – Buzzer driver circuit (part 1 of 2)

The following step numbers match the numbered black circles in Figure 8.9:

1. Place the MOSFET onto the breadboard, paying attention to the
orientation of the component with regards to the legs. Please see Figure
7.7 in Chapter 7, Turning Things On and Off, if you need help to identify
the MOSFET's legs.

2. Place the 100kΩ resistor (R2) into your breadboard. One end of this
resistor shares the same row as the MOSFET's Gate (G) leg.

3. Place the 1kΩ resistor (R1) into your breadboard. One end of this
resistor also shares the same row as the MOSFET's Gate (G) leg.

4. Place the diode into your breadboard, with the cathode leg (the leg at
the end with the band) pointing toward the end of the breadboard.

5. Connect the positive wire of your buzzer into the same row shared by
the diode's cathode leg.

6. Connect the negative wire of your buzzer into a vacant breadboard row.

Now that we have laid the components, let's wire them up:



Figure 8.10 – Buzzer driver circuit (part 2 of 2)

The following step numbers match the numbered black circles in Figure
8.10:

1. Connect the negative rail of the left-hand side power rail to the 1kΩ
resistor (R2).

2. Connect the Source leg (S) of the MOSFET to the negative rail of the
left-hand side power rail.

3. Connect the negative rail of the left-hand side power rail to a GND pin
on your Raspberry Pi.

4. Connect the end of the 100kΩ resistor (R1) to GPIO 12/PWM0 on your
Raspberry Pi. As a reminder, GPIO 12 in its alternative function is
channel PWM0, a hardware PWM pin.

5. Connect the Drain leg (D) of the MOSFET to the anode leg of the
diode.

6. Connect the anode leg of the diode to the negative wire of your buzzer.
7. Connect the buzzer's positive wire/diode's cathode leg into the positive

rail of the right-hand side power rail.
8. Connect the negative rails of the left-hand side and right-hand side

power rails.



9. Connect the positive output of the power supply to the positive rail of
the right-hand side power rail.

10. Connect the negative output of the power supply to the negative rail of
the right-hand side power rail.

Now that you have completed this circuit build, we will proceed and run our
Python example, which will make some music!

Running the RTTTL music example

Run the code in the chapter08/passive_buzzer_rtttl.py file, and your buzzer will
play a simple musical scale.

The code to perform this is quite simple. In line (1) in the following code,
we are using the rtttl module to parse an RTTTL music score into a series of
notes defined by frequency and duration. Our score is stored in the rtttl_score
variable:

from rtttl import parse_rtttl

rtttl_score = parse_rtttl("Scale:d=4,o=4,b=125:8a,8b,        # (1)

    8c#,8d,8e,8f#,8g#,8f#,8e,8d,8c#,8b,8a")

Next, in line (2), we loop through the parsed notes in rtttl_score and extract
the frequency and duration:

    for note in rtttl_score['notes']:                        # (2)

        frequency = int(note['frequency'])

        duration = note['duration'] # Milliseconds

        pi.hardware_PWM(BUZZER_GPIO, frequency, duty_cycle)  # (3)

        sleep(duration/1000)                                 # (4)

In line (3), we set the frequency on the buzzer's GPIO pin using PWM, and
hold the note for its duration at line (4) before continuing to the next note.

In line (3), note that we are using PiGPIO's hardware_PWM() and that BUZZER_GPIO must be a
hardware compatible PWM pin. PiGPIO's hardware-timed PWM (which is available on
any GPIO pin) is not suitable for music creation because it is restricted to a discrete
range of frequencies. If you need a refresher on PWM techniques, revisit Chapter 5,
Connecting Your Raspberry Pi to the Physical World.

Making music with RTTTL is very electronic-sounding, so to speak, and is a
popular technique with resource-limited microcontrollers. However,



remember that, with our Raspberry Pi, we have more than enough resources
and the built-in hardware to play rich media such as MP3s.

Try a web search for RTTTL Songs and you'll find many scores for songs, retro computer
games, and TV and movie themes.

If you want to explore playing and controlling MP3s via Python, you'll find
many resources, tutorials, and examples across the web. Unfortunately, there
are many ways to achieve this task (including changes across different
versions of Raspbian OS), so it can be a bit finicky at times getting your
Raspberry Pi and Raspbian OS set up and configured reliably. If you go
down this route, my recommendation is to explore playing MP3s and
controlling audio (that is, changing volume) on the command line first. Once
you have a stable and reliable setup, then proceed to explore a Python-based
way.

Summary
In this chapter, we learned how to use PWM to set the color of an RGB LED
and that a standalone single RGB LED requires three dedicated GPIO pins to
work—one for each of the colors, red, green, and blue. We then explored
another type of RGB LED, the APA102, which is a 2-wire SPI controllable
device that can be chained together to create LED lighting strips. Next, we
learned how to use an OLED display by creating an example application that
displayed your Raspberry Pi's CPU temperature. We concluded with an
example of using PWM together with a passive buzzer to make sound by
parsing an RTTTL music score.

What you have learned in this chapter will allow you to add visual and
auditable feedback to your own projects. You will also be able to extend
your learning to other types of displays with relative ease, as the Luma
library we have used is capable of working with a range of other display
types and models in addition to the APA102 LED strip and SSD1306 OLED
devices we used in this chapter.



In the next chapter, we will be looking at components and techniques to
measure environmental conditions including temperature, humidity, and
light.

Questions
As we conclude, here is a list of questions for you to test your knowledge
regarding this chapter's material. You will find the answers in the
Assessments section of the book:

1. Your APA102 LED strip is set to show all LEDs as white, but instead,
all of the LEDs look reddish. What could be the problem?

2. What limitation does the APA102 place on SPI?
3. Your APA102 does not work when you use a logic level converter but

appears to work when you connect it directly to the MOSI and SCK
pins on your Raspberry Pi (hence bypassing the logic level converter).
What are some possible causes of the problem?

4. What is the basic process for creating and displaying an image on an
OLED display using the Luma OLED library?

5. What is RTTTL?

Further reading
An APA102 is a good choice to commence your learning on lower level data
protocol and communication. After reviewing the APA102 datasheet for its
data protocol (see the link under Technical requirements at the start of this
chapter), the next logical step is to review some lower-level code. The
APA102 example for PiGPIO is a one such starting point, but you'll find
others on PyPi.org:

http://abyz.me.uk/rpi/pigpio/examples.html#Python_test-APA102_py

The Luma suite of libraries offers many high-level modules for integrating
common display with a Raspberry Pi beyond the APA102 and SSD1306

http://abyz.me.uk/rpi/pigpio/examples.html#Python_test-APA102_py


OLED we covered in this chapter. Furthermore, Luma contains an extensive
range of examples:

Luma: https://pypi.org/project/luma.core (follow the links for different
display types)
Luma examples on GitHub: https://github.com/rm-hull/luma.examples

Luma uses a PIL (Python Imaging Library)/Pillow comparable API for
drawing and manipulating displays. We specifically used ImageDraw in our
OLED example. You will find the PIL API documentation at the following
link:

https://pillow.readthedocs.io

If you would like to explore the RTTTL format further, its Wikipedia site is
an excellent starting point:

RTTTL https://en.wikipedia.org/wiki/Ring_Tone_Transfer_Language

https://pypi.org/project/luma.core
https://github.com/rm-hull/luma.examples
https://pillow.readthedocs.io/
https://en.wikipedia.org/wiki/Ring_Tone_Transfer_Language


Measuring Temperature, Humidity,
and Light Levels

In the previous chapter, we explored two methods of making color with
RGB LEDs – using a common RGB LED and with an addressable APA102
RGB LED strip. We also learned how to use a simple OLED display and
how PWM can be used to play music using a passive buzzer.

In this chapter, we will be looking at some common components and circuits
for collecting environmental data, including temperature, humidity, whether
it's dark or light, and how to detect moisture.

The circuits and code examples we will learn will be useful for building and
experimenting with your own environmental monitoring projects. These
circuits can be considered input or sensor circuits that measure
environmental conditions. By way of example, you could combine the
circuit ideas and examples from Chapter 7, Turning Things On and Off, to
switch on a pump to water a plant when the soil is dry, or switch on a low-
voltage LED lamp when it gets dark. In fact, we have an example of a
visualization platform in Chapter 13, IoT Visualization and Automation
Platforms, where we will capture, record, and visualize historical
temperature and humidity data using one of the circuits from this chapter!

Furthermore, throughout this chapter, we will see practical examples of
analog electronics and associated concepts such as a voltage divider, which
we learned about in Chapter 6, Electronics 101 for the Software Engineer. 

Here is what we will cover in this chapter:

Measuring temperature and humidity
Detecting light
Detecting moisture

Technical requirements



To perform the exercises in this chapter, you will need the following:

Raspberry Pi 4 Model B
Raspbian OS Buster (with desktop and recommended software)
Minimum Python version 3.5

These requirements are what the code examples in this book are based on.
It's reasonable to expect that the code examples should work without
modification on Raspberry Pi 3 Model B or a different version of Raspbian
OS as long as your Python version is 3.5 or higher.

You will find this chapter's source code in the chapter09 folder in the GitHub
repository available at https://github.com/PacktPublishing/Practical-Python-Programm
ing-for-IoT.

You will need to execute the following commands in a terminal to set up a
virtual environment and install the Python libraries required for the code in
this chapter:

$ cd chapter09              # Change into this chapter's folder

$ python3 -m venv venv      # Create Python Virtual Environment

$ source venv/bin/activate  # Activate Python Virtual Environment

(venv) $ pip install pip --upgrade        # Upgrade pip

(venv) $ pip install -r requirements.txt  # Install dependent packages

The following dependencies are installed from requirements.txt:

PiGPIO: The PiGPIO GPIO Library (https://pypi.org/project/pigpio)
PiGPIO DHT: DHT11 and DHT22 sensor library (https://pypi.org/proje
ct/pigpio-dht)
Adafruit ADS1115: ADS1115 ADC library (https://pypi.org/project/Adaf
ruit-ADS1x15)

The electronic components we will need for this chapter's exercises are as
follows:

1 x DHT11 (lower accuracy) or a DHT22 (higher accuracy)
temperature and humidity sensor
1 x LDR (Light Dependent Resistor, also known as a photocell or
photoresistor)

https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio-dht
https://pypi.org/project/Adafruit-ADS1x15


Resistors:
1 x 200 Ω resistor
1 x 10kΩ resistor
1 x 1kΩ resistor
1 x 100kΩ resistor

1 x red LED
1 x ADS1115 analog-to-digital converter module
External power sources – at a minimum, a 3.3 V/5 V breadboard-
mountable power supply.

Measuring temperature and
humidity
The measurement of temperature and related environmental properties is a
common task, and there are many different types of sensors available for
measuring these properties, including thermistors (a temperature-
dependent resistor), sophisticated breakout modules that connect via SPI and
I2C, and sensor varieties such as the DHT11 or DHT22 sensors, which we
will be using for our example.

All sensors have their relative strengths and weaknesses when it comes to
accuracy, response times (how fast we can rapidly get data from them), and
cost.

DHT sensors, as illustrated in Figure 9.1, are inexpensive, durable, and easy
to use:



Figure 9.1 – DHT11 and DHT22 temperature and humidity sensors

The DHT11 is a very common low-cost sensor. The DHT22 is its higher-
accuracy cousin. Both are pin-compatible and will be suitable for our
example. The pinouts of these sensors as illustrated in the preceding figure
are as follows:

Vcc: 3- to 5-volt power source
Data: Data pin that connects to a GPIO pin

NC: Not connected, meaning that this pin is not used
GND: Connects to ground

Here are the core similarities and differences between the DHT11 and
DHT22:

DHT 11 DHT 22

Operating
Voltage 3 to 5 volts 3 to 5 volts

Operating µA (microamps) µA (microamps)



Current

Temperature
Range 0 to 50° Celsius  - 40 to 125° Celsius

Temperature
Accuracy ±2% ±0.5%

Humidity Range 20 - 80% 0 - 100%

Humidity
Accuracy ±5% ±2% to 5%

Maximum
Sampling Rate

Faster – once every 1
second (1Hz)

Slower – once every 2
seconds (0.5Hz)

 

As mentioned, the DHT11 and DHT22 sensors are pin-compatible. They
differ only in their measurement accuracy and range. Either sensor will be
suitable for the circuit we are about to create for measuring temperature and
humidity.

Creating the DHT11/DHT22 circuit

We will begin by creating the circuit illustrated in Figure 9.2 on our
breadboard:



Figure 9.2 – DHT sensor schematic

The following is the breadboard layout for this circuit that we are about to
build:



Figure 9.3 – DHT sensor circuit

Here are the steps to follow, which match the numbered black circles
in Figure 9.3:

1. Place your DHT11 or DHT22 sensor into your breadboard.
2. Place the 10kΩ resistor (R1) into the breadboard. One end of the

resistor shares the same row as the DHT sensor's DATA pin. We will
discuss this resistor and why it's marked as optional in Figure 9.2 after
we complete the circuit build.



3. Connect a 3.3-volt pin on your Raspberry Pi to the positive rail of the
power rail.

4. Connect the 10kΩ resistor (R1) to the positive power rail.
5. Connect the DHT Vcc pin to the positive power rail.
6. Connect a GND pin on your Raspberry Pi to the negative power rail.
7. Connect the GND pin on the DHT sensor to the negative power rail.
8. Finally, connect the DHT sensor's DATA pin to the GPIO 21 on your

Raspberry Pi.

This now completes our DHT sensor circuit build.

In our circuit, Vcc is connected to 3.3 volts, which makes the DHT data pin operate at
this voltage. DHT11 and DHT22 are rated for 5 volts; however, if you connected Vcc to
5 volts, the data pin becomes a 5-volt logic pin, which is not safe for use with the
Raspberry Pi's 3.3-volt GPIO pin.

The 10kΩ pull-up resistor is optional because the DHT software library we
are using already enables Raspberry Pi's internal pull-up resistor by default.
I've included the pull-up resistor in the circuit schematic because it's
included in the circuit examples in many DHT11/DHT22 datasheets. If you
need a refresher on pull-up resistors, please revisit Chapter 6, Electronics 101
for the Software Engineer.

In our circuit and for the DHT11/DHT22, the leg labeled NC means Not Connected. NC
is a common abbreviation used to indicate that a leg or terminal of a sensor, IC, or
component is not internally connected to anything. However, when we are dealing with
switches – including relays – a component leg or terminal labeled NC means the
Normally Closed connection path...so always interpret NC in the context of the
component you are looking at.

Once you have created your circuit, we are ready to run and explore the code
to measure temperature and humidity.

Running and exploring the DHT11/DHT22 code

Run the code found in the chapter09/dht_measure.py file, and the measured
temperature and humidity will be printed to your terminal, similar to the
following:

(venv) python DHT_Measure.py

{'temp_c': 21, 'temp_f': 69.8, 'humidity': 31, 'valid': True}



Here, we have the following:

temp_c is the temperature in degrees Celsius.
temp_f is the temperature in degrees Fahrenheit.
humidity is the relative humidity percentage.
valid indicates whether the reading is considered valid by way of an
internal sensor checksum check. Readings where value == False must be
abandoned.

The code in the source file is concise and is fully replicated here.

In line 1, we import the DHT sensor library and instantiate it in line 2.
Update the line to match the DHT11 or DHT22 sensor you are using:

from pigpio_dht import DHT11, DHT22   # (1)

SENSOR_GPIO = 21 

sensor = DHT11(SENSOR_GPIO)           # (2)

#sensor = DHT22(SENSOR_GPIO)

result = sensor.read(retries=2)       # (3)

print(result)

result = sensor.sample(samples=5)     # (4)

print(result)

In lines 3 and 4, we use the pigpio-dht library to request a temperature and
humidity measurement from the sensor. A call to read() will query the sensor
for measurement and will keep retrying for retries times if the measurements
come back as valid == False. An alternative method for measurement is the
sample() method, which will take many individual samples of the temperature
and humidity and return a normalized measurement.

The advantage of sample(), especially for the less-accurate DHT11 sensor, is a
more consistent temperature and humidity readings since outlier readings
(random spikes) are removed; however, it does significantly increase the
time it takes to read measurements – refer back to the Maximum Sampling
Rate row in the table at the start of this section.

As an example, for a DHT11 with a maximum sampling rate of 1 second, for
5 samples, the sample(samples=5) call will take approximately 1 second x 5



samples = 5 seconds to return, while a DHT22 with a 2-second sample rate
will take about 10 seconds.

DHT11 and DHT22 are pin-compatible; however, they are not software-compatible due
to the way each sensor encodes its data while mixing up the software driver and sensor.
For example, while a DHT22 sensor using a DHT11 library will generate results, they
will be inaccurate (and it'll be pretty obvious – for example, saying your room is
650+ degrees Celsius!)

How easy was that! The DHT series are popular low-cost sensors that
measure both temperature and humidity. For those cases where you need to
perform more rapid readings, or you need to mount a sensor in hostile
environments, such as in water or outside, directly exposed to the elements,
you will certainly be able to find a sensor for your needs.

Here is a quick rundown of the other ways temperature (and similar
environmental) sensors can connect to your Raspberry Pi:

Thermistors are temperature-sensitive resistors that are very small and
ideal for tight spaces, and you can get them in sealed packages for
outside and in-liquid use. You can use them with a voltage-divider
circuit (similarly to the Light-Dependent-Resistor (LDR) we will
cover in the next section).
There are many varieties of I2C and SPI sensors available that can be
queried fast and may also have other additional on-board sensors, such
as air pressure. These modules are typically larger and are probably best
not exposed directly to the elements.
1-wire temperature sensors are also compact and easily sealable and
have the advantage that they can have long wires (100 meters plus).

With this, we come to the end of this section on measuring temperature and
humidity. Many environmental monitoring projects require you to measure
temperature and humidity, and using a DHT11 or DHT22 with Raspberry Pi
is an easy and cost-effective way to achieve this. We will revisit our
DHT11/22 circuit again in Chapter 13, IoT Visualization and Automation
Platforms, where we will integrate this sensor with an IoT platform to
collect and monitor the temperature and humidity.



Now that we have explored temperature sensors, let's learn how to detect
light.

Detecting light
Detecting the presence or absence of light is easily achieved with a special
type of resistor known as an LDR. LDRs are a low-cost light sensor, and we
find them in many applications, from light-activated switches and lamps or
as part of the circuit that dims your alarm clock display when it's dark, to
part of alarm circuits on cash boxes and safes.

You may also find LDRs referred to as photoresistors or photocells.

The following figure shows a typical LDR component, together with a few
varieties of LDR schematic symbols. If you examine the symbols, you will
notice that they are a resistor symbol with inward-pointing arrows. You can
think of these arrows as representing light falling on the resistor:

Figure 9.4 – A physical LDR component and a variety of schematic symbols

An LDR varies its resistance with the relative light it detects. If you placed
the terminals of your multimeter in Ohms mode across an LDR, you will
find (roughly after a few seconds) the following:



When the LDR is in the dark (for example, if you cover it up), its
resistance will typically measure many mega-ohms.
In a normally lit room (for example, on the table with the ceiling lights
on), the LDR's resistance will measure in kilo-ohms.
When an LDR is in bright light (direct sunlight or shining a torch on it),
its resistance will measure a few hundred-ohms or less.

This gives us distinct regions where it becomes possible to work out the
presence or absence of light. With calibration and a little tuning, we can
easily identify a point between dark and light that we can use to trigger an
event. For example, you could use an LDR circuit such as the one we will
create next to programmatically control the switching circuits we created in C
hapter 7, Turning Things On and Off.

LDRs are only good at measuring relative light levels – the presence or absence of light.
If you want absolute measurements such as lux levels, or even to detect color, there is a
range of ICs in the I2C or SPI breakout module form that can achieve this.

Using this basic understanding, we will build our LDR circuit to detect light.

Creating an LDR light-detecting circuit

As discussed, an LDR varies its resistance in relation to the relative light it
detects. To detect varying resistance with our Raspberry Pi, we need to take
a few steps that were covered in previous chapters:

We need to turn the varying resistance into a varying voltage because
our Raspberry Pi GPIO pins work on voltage, not resistance. This is an
application of Ohms law and a voltage-divider circuit, which we
learned about in Chapter 6, Electronics 101 for the Software Engineer.
Our Raspberry Pi GPIO pins can only read digital signals – for
example, a high (~3.3 volts) or low (~0 volts) signal. To measure a
varying voltage, we can attach an Analog-to-Digital Converter (ADC)
such as an ADS1115. We covered the ADS1115 and accompanying
Python code in Chapter 5, Connecting Your Raspberry Pi to the Physical
World.



We are about to create the circuit illustrated in Figure 9.5 on your
breadboard. This circuit and the accompanying code will illuminate the LED
when it detects a certain level of darkness:

Figure 9.5 – LDR circuit with the ADS1115 ADC schematic

We will build our circuit in two parts. For the first part, we will place the
components onto our breadboard, as shown:





Figure 9.6 – LDR circuit with ADS1115 ADC circuit (part 1 of 2)

Here are the steps to follow, which match the numbered black circles
in Figure 9.6:

1. Place the LDR onto the breadboard.
2. Place a 10kΩ resistor (R1) onto the breadboard. One end of this resistor

shares the same row as one of the LDR.
3. Place the ADS1115 ADC onto the breadboard.
4. Place a 200kΩ resistor (R2) onto the breadboard.
5. Place an LED onto the breadboard, paying careful attention to connect

the LED's cathode leg to the same row shared by one of the legs of the
200kΩ resistor.

Now that we have placed our components, we will wire them up:





Figure 9.7 – LDR circuit with ADS1115 ADC circuit (part 2 of 2)

Here are the steps to follow; this time they match the numbered black circles
in Figure 9.7:

1. Connect the positive rail of the power rail to the LDR.
2. Connect a 3.3-volt pin from your Raspberry Pi to the positive rail of the

power rail.
3. Connect a GND pin from your Raspberry Pi to the negative tail of the

power rail.
4. Connect the negative power rail to the 10kΩ resistor (R1).
5. Connect the Vdd terminal of the ADS1115 to the positive power rail.
6. Connect the GND terminal of the ADS1115 to the negative power rail.

7. Connect the junction of the LDR and 10kΩ resistor (R1) to port A0 on
the ADS1115 (can you see how the LDR and resistor are creating a
voltage divider, with the varying voltage output now attached to A0?).

8. Connect the Raspberry Pi's SDA pin to the ADS1115 SDA terminal.
9. Connect the Raspberry Pi's SCL pin to the ADS1115 SCL terminal.

10. Connect the negative power rail to the 200kΩ resistor.
11. Connect the anode leg of the LED to your Raspberry Pi's GPIO 21 pin.

I hope you were able to see the voltage divider that was formed by the LDR
and the 10kΩ resistor R1. We will cover the reasoning behind the 10kΩ
resistor later in the chapter in the section titled LDR configuration summary.

As the light detected by the LDR varies, its resistance varies. The effect of
this is to alter the relative ratios of R1 (fixed resistor) and the LDR's
resistance (varying resistance), which in turn changes the voltage measured
at the interception of the LDR and R1 (that's where A (analog-in) of our
ADS1115 is attached to measure this varying voltage).

Don't place your LED too close to your LDR. When it illuminates, the LED is a source of
light that is detectable by the LDR, and it could interfere with your LDR readings in the
code.

Now that you have created the LDR circuit, we will calibrate and run our
example code.



Running the LDR example code

We are about to run two programs:

chapter09/ldr_ads1115_calibrate.py, which will help us calibrate our LDR
readings
chapter09/ldr_ads1115.py, which monitors the light level and switches on
the LED when the light falls below a configurable level

First, we should check that the ADS1115 is connected correctly and can be
seen by your Raspberry Pi. Run the i2cdetect command in a Terminal. If your
output does not include a number (for example 48), then please verify your
wiring:

$ i2cdetect -y 1

# ... truncated ...

30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

40: -- -- -- -- -- -- -- -- 48 -- -- -- -- -- -- -- 

50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

# ... truncated ...

We first covered the ADS1115 analog-to-digital converter and the i2cdetect utility in Chapte
r 5, Connecting Your Raspberry Pi to the Physical World.

Let's run the examples, starting with the calibration program:

1. Run the code found in the chapter09/ldr_ads1115_calibrate.py file, and
follow the instructions that appear on your terminal, which are as
follows:

1. Place the LDR in the light and press Enter: Use the ambient room light
for this exercise, and be careful that you are not casting a shadow
over the LDR. When you are building your application, you will
want to use the source of light that makes sense for your purposes,
be it direct sunlight, room light, or shining a bright torch into the
LDR, for example.

2. Place the LDR in the dark and press Enter: I'd suggest completely
covering the LDR with a dark cloth or cup. Using your finger is
not always ideal as a sensitive LDR may still detect a level of light
through your finger:

(venv) python ldr_ads1115_calibrate.py 

Place LDR in the light and press Enter



Please wait...

Place LDR in dark and press Enter

Please wait...

File ldr_calibration_config.py created with:

# This file was automatically created by ldr_ads1115_calibrate.py

# Number of samples: 100

MIN_VOLTS = 0.6313

MAX_VOLTS = 3.2356

The calibration program takes a number of samples (by default, 100)
from the ADS1115 in both the dark and light conditions and
calculates the average reading. Next, the program writes the results
(also shown in the terminal) into the ldr_calibration_config.py file. This
is a Python source file for our example, imported into our actual
LDR and LED example, as we will see in the next step. 

2. Run the program found in the chapter09/ldr_ads1115.py file, and observe
the output on the terminal, which displays the voltage read by the
ADS1115:

LDR Reading volts=0.502, trigger at 0.9061 +/- 0.25, triggered=False

Hopefully, the output should read triggered = False, and the LED
should be off. If this is not the case, try repeating the calibration
process in step 1, or read on and you'll discover how to adjust the
trigger point in code.

3. Gradually move your hand nearer and nearer to the LDR restrict the
amount of light reaching it. As you move your hand, you will notice
the voltage reading on the terminal change, and at a certain voltage level,
the trigger point will be reached and the LED will illuminate:

LDR Reading volts=1.116, trigger at 0.9061 +/- 0.25, triggered=False

LDR Reading volts=1.569, trigger at 0.9061 +/- 0.25, triggered=True

What you are witnessing is the function of the voltage divider varying the
voltage as the LDR's resistance changes in response to the light it detects.
This voltage is then read by the ADS1115.

You may have noticed that the voltage produced is not the full range of ~0
volts to ~3.3 volts as it was when we used a potentiometer with our



ADS1115 back in Chapter 5, Connecting Your Raspberry Pi to the Physical
World. Our restricted range is a side-effect and limitation of our fixed
resistor (R1) and varying-resistance (LDR) circuit, which cannot vary
resistance to the extremes necessary to reach ~0 or ~3.3 volts. You will
encounter this restriction in voltage divider circuits since they will by design
include a fixed resistor value. By contrast, our potentiometers
are two variable resistors creating a voltage divider, and we can effectively
zero-out (get close to 0 Ω) one side of the divider, depending on which
direction we turn the potentiometer's dial, allowing us to get near to both 0
volts and 3.3 volts.

Now that we have seen this code running, let's see how it works.

LDR code walkthrough

A bulk of the code in both chapter09/ldr_ads1115_calibrate.py
and chapter09/ldr_ads1115_calibrate.py is the boilerplate code to set up and
configure the ADS1115 and set up the LED using PiGPIO. We will not
recover the common code here. If you need a refresher on the ADS1115-
related code, please review the exercise found in Chapter 5, Connecting Your
Raspberry Pi to the Physical World.

Let's look at the Python code that makes our LDR work.

In line 1, we see that we are importing the ldr_calibration_config.py file that we
created with our calibration program previously.

Next, in line 2, we are assigning the calibration values to the LIGHT_VOLTS (the
voltage detected by the ADS1115 when the LDR was in the light) and
DARK_VOLTS (the voltage detected when you covered up the LDR) variables:

import ldr_calibration_config as calibration                   # (1)

# ... truncated ...

LIGHT_VOLTS = calibration.MAX_VOLTS                            # (2)

DARK_VOLTS = calibration.MIN_VOLTS

TRIGGER_VOLTS = LIGHT_VOLTS - ((LIGHT_VOLTS - DARK_VOLTS) / 2) # (3)

TRIGGER_BUFFER = 0.25                                          # (4)



In line 3, we create a trigger point. This is a voltage point we will use later in
code to switch on and off the LED.

You can adjust and experiment with the formula or value of TRIGGER_VOLTS to change the
lighting condition that causes the code to trigger.

The TRIGGER_BUFFER variable at line 4 is used to create a buffer or lag in our
trigger, better known in electronic terms as hysteresis. This value creates a
small window range where the detected voltage can vary without causing a
trigger or un-trigger event. Without this hysteresis, the trigger (and LED)
would turn on and off rapidly as the detected voltage oscillates around
the TRIGGER_VOLTS trigger voltage.

To experience this effect practically, set TRIGGER_BUFFER = 0 and you will find
that as you move your hand above the LDR, the LED is very sensitive to on
and off, and at a certain point may even appear to blink. As you increase the
value of TRIGGER_BUFFER, you will notice that the hand movement required to
switch the LED becomes on and off greater.

Moving on, in line 5, we come to the code that determines whether our
trigger point has been reached. The update_trigger() function compares the
voltage detected by the ADS1115 to the TRIGGER_VOLTS value adjusted for
TRIGGER_BUFFER, and updates the triggered global variable if the triggering point
is breached:

   triggered = False # (5)

   

   def update_trigger(volts):

       global triggered

       if triggered and volts > TRIGGER_VOLTS + TRIGGER_BUFFER:

           triggered = False

       elif not triggered and volts < TRIGGER_VOLTS - TRIGGER_BUFFER:

           triggered = True

Near the end of the source file, we have a while loop in line 6. We are reading
in the ADS1115 detected voltage, updating the global triggered variable,
before printing the results to the terminal:

trigger_text = "{:0.4f} +/- {}".format(TRIGGER_VOLTS, TRIGGER_BUFFER) 

  try:



      while True:                                                  # (6)

          volts = analog_channel.voltage

          update_trigger(volts)

          output = "LDR Reading volts={:>5.3f}, trigger at {}, triggered={}"

                   .format(volts, trigger_text, triggered)

          print(output)

          pi.write(LED_GPIO, triggered)                           # (7)

          sleep(0.05)

Finally, in line 7, we toggle the LED on or off depending on the value of
triggered.

Now that we have seen how we detect light with our LDR circuit and Python
code, I want to briefly cover how the series resistor is chosen for the LDR
circuit.

LDR configuration summary

You may have realized while working with the LDR circuit and code that
there are a few tunable parameters that influence how the circuit and code
work, and did you wonder why we used a 10kΩ resistor?

No two LDRs will give the same resistance-to-light measurement and
their resistance-to-light range is not linear. The implication of this is that
your LDR, plus the lighting conditions you plan to use it in, can influence a
suitable fixed resistor value.

Here is a rough guide to selecting an appropriate fixed resistor:

If you want the LDR to be more sensitive in darker conditions, use
a higher value resistor (for example, try 100kΩ).
If you want your LDR to be more sensitive in brighter conditions, use
a lower value resistor (for example, try 1kΩ).

Remember that these are just suggestions, so feel free to try different
resistances for your own needs. Plus, whenever you change the value of the
fixed resistor, rerun the calibration code.



There is also a formula known as Axel Benz that can be used to calculate a
reference resistance value for an analog component such as an LDR. The
formula is expressed as follows:

The parameters in the formula are as follows:

Rref is the value of the fixed resistor, R1.
Rmax is the maximum resistance of the LDR (when in dark). A typical
value might be 10 Ω.
Rmin is the minimum resistance of the LDR (when in bright light). A
typical value might be 10M Ω.

So, if we use the typical values, we get the 10kΩ value we used for R1:

Measure the extremes on your LDR with a multimeter and see what value you calculate.
Do not be surprised if your measurements vary widely from the typical 10kΩ. When you
consider we are working with an LDR ohmic range of ~10 Ω to ~10,000,000 Ω, the
difference may still only be a fraction of a percent!

We also saw previously in the code that two variables influence how our
code triggers:

Change the value of TRIGGER_VOLTS to change the point at which the code
triggers – for example, turns on or off the LED.
Change the value of TRIGGER_BUFFER to alter how sensitive the trigger is to
changing light conditions.

Finally, remember that an LDR detects light logarithmically, not linearly –
for example, as you gradually lower your hand or an object over the LDR to
restrict light, the voltages reported by the LDR will not necessarily change in
proportion to the amount of light you are restricting. This is a reason why we
need to change the fixed resistor value if we want the LDR to be more
sensitive in darker or brighter conditions.



You can experiment with replacing the fixed resistor, R1, with a variable resistor (for
example, replace the fixed 10kΩ with a 20kΩ variable resistor set to 10kΩ. We choose
20kΩ because we can adjust it above and below 10kΩ. A 10kΩ variable resistor would
only let us adjust down resistance). After code calibration at 10kΩ and defining a trigger
point in code, you can then fine-tune the trigger point by adjusting the variable resistor.

This concludes our discussion of LDRs. We have seen how to build a simple
LDR circuit together with an ADS1115 ADC, and how to detect light with
Python. You could use this simple circuit and accompanying code for any
project where the detection of light or darkness is the desired input trigger –
for example, a light-activated switch.

Next, we will learn how to detect moisture.

Detecting moisture
Guess what...we have already done the grunt work to detect moisture! It's
just another application of the LDR circuit and code, only we replace the
LDR with probes.

For this exercise, you can create a set of probes using two pieces of wire
(with the ends stripped), and attach them in place of the LDR, as shown in
Figure 9.8. This is the same circuit we built in the previous section and
showed in Figure 9.7, only this time, we have replaced the LDR with two
wires. Let's make this slight change now:



Figure 9.8 – Moisture detection circuit

Here are the steps to follow, which match the numbered black circles in
Figure 9.8:



1. Remove the LDR from the breadboard.
2. Place a wire (with both ends stripped) into a breadboard row that

previously connected to one of the LDR's legs (in the illustration, this
new wire connects back to 3.3 volts on your Raspberry Pi).

3. Place another wire (with both ends stripped) into a breadboard row that
previously connected the LDR's other leg (in the illustration, this new
wire connects to the row shared by the 10kΩ resistor (R1)).

This small change – replacing the LDR with bare wires – turns our circuit
into a basic moisture-detecting circuit. Let's try the circuit out!

In the chapter09 folder, you will find two files, named moisture_calibrate.py and
moisture_ads1115.py. These files are almost identical to the LDR file set we
used in the previous section, except I've changed the wording and variable
names from Light/Dark to Wet/Dry. The core differences are marked by
comments in the respective files.

Given the similarity, we will not cover these source files and the moisture
circuit in detail; however, for reference, these are the steps to follow:

1. Ensure the probe is dry.
2. Run moisture_calibrate.py and follow the instructions to perform a voltage

calibration.
3. Run moisture_ads1115.py.
4. Check that the terminal output indicates trigger=False (the code triggers

on the wet condition).
5. Place the probe in a cup of water (yes, it's safe to do this) and observe

the voltage reading on the terminal change (It's also OK if the probes
get shorted accidentally as it will not cause any damage).

6. With the probes immersed in water, check whether the terminal output
reads trigger=True (probe wet condition).

7. If the trigger is still True, you will need to adjust the value of
TRIGGER_VOLTS in the code.

You can also place the probe in dry dirt and observe the voltage readings. Slowly wet the
dirt and the voltage reading should change. We now have the basis of a program to tell
you when your plant needs watering!



So, why does this work? Simple – water is a conductor of electricity and is
behaving like a resistor between our two probes. 

Different water in different parts of the world and from different sources – for example,
tap versus bottle – may conduct electricity differently. This means you might need to play
with the value of the R1 resistor if your circuit is not responding well with the 10kΩ
resistor. In addition, you can also experiment with the distance between the probe wires
and their size.

We will conclude our discussion on moisture detection by comparing what
we have just created with an off-the-shelf moisture detector that you can
purchase.

Comparing detection options

How do our simple circuit and wire probes compare to a water/moisture
detection module that you can find on retail sites such as eBay? These
products typically contain a probe of some sort, plus a small electronic
module. A picture of one of these modules, plus a few probes, are shown
here:



Figure 9.9 – Moisture detection module and probes 

The three probes pictured each have two terminals and are simply an
exposed copper trace on a circuit board, analogous to the exposed wires we
saw in our circuit in Figure 9.8. A key difference is that these probes expose
a larger surface area and are therefore more sensitive. Furthermore, they are
also likely to be less prone to corrosion (at least in the short-to-medium
term) than two stripped wires.

You can connect these probes directly to the exposed wires in our circuit shown in Figure
9.8 to expand and enhance the detection capabilities of the circuit!

Let's discuss the electronic module (zoomed in and labeled in Figure 9.9 on
the right-hand side).

In addition to a Vcc/Vin and a GND terminal, these modules often (not
always, but often) have two output terminals or pins, which are as follows:



An analog output (in our example, this is labeled A)
A  digital output (labeled S)

Please note that I am not providing instructions on how to connect the previously
pictured module to your Raspberry Pi, but rather, I will keep the discussion general.
There are many variations of these modules available and while their operation is
similar, there can be differences in how they need to be wired. At this stage of the book, if
you are comfortable with the basic principles of analog versus digital, voltage dividers,
and ADC, you have all you need to understand and make an informed decision on how
to interface these modules to a device such as a Raspberry Pi. A good starting place will
be your modules' datasheet or any information provided at the place of purchase.

The analog output is a pass-through to the probe. You connect it directly into
a voltage divider circuit and measure a varying voltage with an ADC such as
the ADS1115 – the exact scenario we created in Figure 9.8. If you use the
analog pass-through, you are bypassing all the other circuitry on the module
(hence why you can just connect the probes directly into our example
circuit).

The digital output is what uses the module circuitry. A typical module circuit
includes, at a minimum, an integrated circuit known as a voltage comparator,
a fixed resistor, and a variable resistor, which is a trigger-point trim
adjustment. The fixed resistor together with the probe creates a voltage
divider. The voltage comparator is responsible for monitoring the voltage
across the voltage divider and triggering the digital output (for example,
transition from LOW to HIGH) at a point determined by trim adjustment. An
example of a trim adjustment variable resistor can be seen in Figure 9.9.

If this voltage comparison and triggering sounds a little familiar, you are
correct. This module with its voltage comparator and configurable trigger
point is, in principle, a purely electronic version of the LDR and moisture
circuits and Python code we have created. And yes, you could use the LDR
in one of these modules instead of a probe!

So, to conclude, what's better – using an ADS1115 and voltage divider type
circuit such as that shown in Figure 9.8, or using a module such as that
pictured in Figure 9.9? There is no one best answer; however, the following
points will help you make your own decision:



Using a circuit such as that in Figure 9.8 is an analog approach. The
raw voltage detected by the sensor is passed directly to your Raspberry
Pi. One simple advantage of this approach is that you have full control
over a trigger point in code. You could, as an example, remotely adjust
the trigger point from a web page. The downside of this approach is that
you need a more complex circuit that involves an ADS1115 and a
voltage divider.
Using a module such as that pictured in Figure 9.9 as a digital approach
promotes a simpler interfacing circuit to your Raspberry Pi in that you
can connect the digital output terminal directly to a GPIO pin (as long
as the digital output of the module 3.3-volts). The caveat is that you
must have physical access to the module and the adjustment trim to
change the trigger point.

Summary
In this chapter, we learned how to measure temperature and humidity using
the common DHT11 and/or DHT22 sensors. We also looked at how to use
an LDR to detect light, and this allowed us to explore voltage divider circuits
and ADCs in greater detail. We concluded by retrofitting our LDR circuit so
that we could detect moisture.

The example circuits and code we covered in this chapter provide practical
examples of measuring environmental conditions with readily available
sensors and simple circuits. Your understanding of these sensors and circuits
now means you can adapt the examples for your own environmental
monitoring projects, including using them as input triggers together with
Python to control other circuits.

We also saw new practical applications of voltage divider circuits and how
they are used in analog circuits to turn variable resistance into a variable
voltage for use with an ADC. These examples and your understanding of
them represent an important skill that you can adapt and use with other
analog-based sensors.



In the next chapter, we will learn how to go deeper into DC motor control
and learn how to control a servo.

Questions
As we conclude, here is a list of questions for you to test your knowledge of
this chapter's material. You will find the answers in the Assessments section
of the book:

1. Can you list two differences between a DHT11 and DHT22 temperature
and humidity sensor?

2. Why is the external 10kΩ pull-up resistor optional in our DHT11/22
circuit?

3. Describe the basic electronic principle used with an LDR to measure
light.

4. How can you make an LDR more or less sensitive to certain lighting
conditions?

5. You have created an LDR circuit and calibrated the Python code. Now,
you change the LDR and find that the voltages readings and in-code
trigger point behave slightly differently. Why? 

6. Why does placing two wires in water work as a basic moisture detector
when used with a voltage divider and ADS1115 circuit?



Movement with Servos, Motors, and
Steppers

In the previous chapter, we covered how to measure temperature, humidity,
light, and moisture. In this chapter, we will turn our attention to the control
of motors and servos, which are common devices for creating physical
movement and motion. The core concepts, circuits, and code you will learn
in this chapter will open up a world of physical automation and robotics
using your Raspberry Pi.

We will be learning how Pulse Width Modulation (PWM) is used to set the
angle of a servo, and how we use an H-Bridge IC to control the direction and
speed of a DC motor. We will look at stepper motors and how they can be
controlled for precise movement.

Here is what we will cover in this chapter:

Using PWM to rotate a servo
Using an H-Bridge IC to control a motor
Introduction to stepper motor control

Technical requirements
To perform the exercises in this chapter, you will need the following:

Raspberry Pi 4 Model B
Raspbian OS Buster (with desktop and recommended software)
Minimum Python version 3.5

These requirements are what the code examples in this book are based on.
It's reasonable to expect that the code examples should work without
modification on Raspberry Pi 3 Model B or a different version of Raspbian
OS as long as your Python version is 3.5 or higher.



You will find this chapter's source code in the chapter10 folder in the GitHub
repository available at https://github.com/PacktPublishing/Practical-Python-Programm
ing-for-IoT.

You will need to execute the following commands in a terminal to set up a
virtual environment and install the Python libraries required for the code in
this chapter:

$ cd chapter10              # Change into this chapter's folder

$ python3 -m venv venv      # Create Python Virtual Environment

$ source venv/bin/activate  # Activate Python Virtual Environment

(venv) $ pip install pip --upgrade        # Upgrade pip

(venv) $ pip install -r requirements.txt  # Install dependent packages

The following dependency is installed from requirements.txt:

PiGPIO: The PiGPIO GPIO library (https://pypi.org/project/pigpio)

The electronic components we will need for this chapter's exercises are as
follows:

1 x MG90S hobby servo (or an equivalent 3-wire 5-volt hobby
servo). Reference datasheet: https://www.alldatasheet.com/datasheet-pdf/pdf/1
132104/ETC2/MG90S.html

1 x L293D integrated circuit (IC) (make sure it has the D – that is,
L293D, not L293). Reference datasheet: https://www.alldatasheet.com/datas
heet-pdf/pdf/89353/TI/L293D.html

1 x 28BYJ-48 stepper motor (5 volts, 64 steps, 1:64 gearing).
Note: 28BYJ-48 comes in 5-volt and 12-volt varieties and different
configuration steps and gearings. Reference datasheet: https://www.alldata
sheet.com/datasheet-pdf/pdf/1132391/ETC1/28BYJ-48.html

2 x size 130 (R130) DC motor rated 3-6 volts (ideally with a stall
current < 800 mA), or alternate DC motor with compatible voltage and
current ratings
External power source – at a minimum, a 3.3 V/5 V breadboard-
mountable power supply

Let's commence by learning how to use a servo with our Raspberry Pi,
Python, and PiGPIO.

https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://pypi.org/project/pigpio
https://www.alldatasheet.com/datasheet-pdf/pdf/1132104/ETC2/MG90S.html
https://www.alldatasheet.com/datasheet-pdf/pdf/89353/TI/L293D.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132391/ETC1/28BYJ-48.html


Using PWM to rotate a servo
Common servomotors, or servos, are internally geared motors that allow you
to rotate its shaft to a precise angle within a 180-degree arc. They are a core
component of industrial robots, and toys alike, and we're all familiar with
hobby servos found in toys such as radio-controlled cars, planes, and drones.

Pictured in Figure 10.1 are a full-size hobby-style servo, a micro servo, and
a set of header pins, which are useful to help connect a servo to a
breadboard, which we will need to do later in this section as we build our
circuit:

Figure 10.1 – Servos

The great feature of servos is that they are essentially a Plug'n'Play style
device – after we connect them to the power supply, we just need to send
them a PWM signal that encodes the angle we want the servo to rotate to,
and presto! We're done. No ICs, no transistors, or any other external
circuitry. What's even better is that servo control is so common that many
GPIO libraries – including PiGPIO – include convenience methods for their
control.

Let's start our servo exploration by connecting one to our Raspberry Pi.

Connecting a servo to your Raspberry Pi

Our first task for our servo example is to wire it up to a power source and
our Raspberry Pi. A schematic representing this wiring is shown here:



Figure 10.2 – Servo wiring schematic

Let's get started wiring our servo using a breadboard, as shown:

Figure 10.3 – Servo breadboard layout

Before we step through the wiring procedure, first I want to briefly discuss
the wire colors coming out of a servo. While servo wire colors are somewhat



standard, they can vary between different manufacturers and servos. Use the
following pointers when connecting your servo at steps 4, 5, and 6. If your
servo has colored wires that I do not list in the following list, you will need
to consult the datasheet for your servo. 

Common servo wire colors are as follows:

The brown or black wire connects to GND
The red wire connects to +5-volts
The orange, yellow, white, or blue wire is the signal/PWM input wire
that connects to a GPIO pin

Here are the steps to follow to create your breadboard build. The step
numbers match the numbers in the black circles in Figure 10.3:

1. Connect the left-hand side and right-hand side negative power rails
together.

2. Connect a GND pin on your Raspberry Pi to the left-hand side negative
power rail.

3. Connect the servo into the breadboard. As mentioned previously and
shown in Figure 10.1, you will need a set of header pins (or
alternatively, male-to-male jumper cables) to connect your servo to
your breadboard.

4. Connect the black wire (negative/GND) from the servo to the negative
rail of the right-hand side power rail.

5. Connect the red wire (5-volt power) from the servo to the positive rail
of the right-hand side power rail.

6. Connect the signal wire from the servo to GPIO 21 on your Raspberry
Pi.

7. Connect the positive output terminal of a 5-volt power supply to the
positive rail of the right-hand side power rail.

8. Connect the negative output terminal of the power supply to the
negative rail of the right-hand side power rail.

You will need to use an external 5-volt power source (steps 7 and 8) to
power your servo. A small servo such as an MG90S uses ~200mA as it
rotates with no load on the shaft/horn (the horn is the arm connected to the
shaft of the servo), and ~400+mA maximum current if you attach a heavy



load to the horn or you forcefully stop a rotation. Drawing this current
directly from your Raspberry Pi's 5-volt pin may be enough to cause it to
reset.

Many cheap car-like toys have a hard left/right mock servo for their steering
mechanisms. It might look like a servo on the outside, but in truth, it's just a basic DC
motor with some gears and a spring that create the hard left/right steering angle. It's the
spring that returns the servo to center when the motor is not engaged. If you do not have
granular control over the angle, it's not a true servo.

Before we get into some code, we'll take a quick look at how PWM is used
to control a servo. This will give you some background on what's happening
when we get to the code.

How a servo is controlled using PWM

Servos typically require around a 50 Hz PWM signal (some variation around
50 Hz is okay, but we'll stick with 50 Hz as this is the common reference
point), and a pulse width between 1.0 milliseconds and 2.0 milliseconds that
determines the angle of rotation. The relation between pulse widths, duty
cycles, and angle is illustrated in Figure 10.4. Don't worry if all this does not
sink in just yet. It should become more clear as we see our servo in action
and review our servo-related code in the next section:



Figure 10.4 – Servo's pulse width, duty cycle, and angles

We have not covered pulse width in relation to our earlier coverage of PWM;
however, it's just another way of describing the duty cycle.

Here is an example:

If we have a PWM signal at 50 Hz (that is, 50 cycles per second), then
this means that 1 PWM cycle takes 1 / 50 = 0.02 seconds, or 20 ms.
Thus, a pulse width of 1.5 ms expressed as a duty cycle is 1.5 ms / 20
ms = 0.075, multiplied by 100 gives us a duty cycle of 7.5%.

To work backward, we have the following:

A duty cycle of 7.5% divided by 100 is 0.075. Then, 0.075 x 20 ms =
1.5 ms – that is, a 1.5 ms pulse width.

If you'd prefer a formula to relate pulse width, frequency, and duty cycle,
here it is:



To convert back, we have the following:

Okay, enough with the math. Let's run and review the Python code to make
our servo move.

Running and exploring the servo code

The code we are about to run can be found in the chapter10/servo.py file. I
recommend reviewing the source code before proceeding so that you have
an overall idea about what the file contains.

When you run the code found in the chapter10/servo.py file, your servo should
rotate left and then right several times.

Let's look at the code, starting with some pulse width variables defined at
line 1:

LEFT_PULSE  = 1000   # Nano seconds          # (1)

RIGHT_PULSE = 2000

CENTER_PULSE = ((LEFT_PULSE - RIGHT_PULSE) // 2) + RIGHT_PULSE  # Eg 1500

These pulse widths represent our servo's extreme left and right rotation.

Note that the LEFT_PULSE and RIGHT_PULSE values are in nanoseconds, as this is the unit used
by the PiGPIO servo functions.

These values of LEFT_PULSE = 1000 and  RIGHT_PULSE = 2000 are the perfect world
values that you will see sighted often. In reality, you may need to make
slight adjustments to these variables to get the full rotation out of your servo.
For example, my test servo needed the LEFT_PULSE = 600 and  RIGHT_PULSE =
2450 values to achieve full rotation. You'll know if you have adjusted too far
if your servo motor stays engaged and makes a groaning noise when it is at
full left or right rotation. If this happens, disconnect power immediately to
prevent damage to the servo and readjust your values.



If your serve rotates backward – for example, it rotates to the left when you expect it to
rotate to the right – swap the values for  LEFT_PULSE and RIGHT_PULSE. Or, just turn your
servo upside down.

At line 2, we define the MOVEMENT_DELAY_SECS= 0.5 variable, which we need later
to add a delay between servo movements:

  # Delay to give servo time to move

  MOVEMENT_DELAY_SECS = 0.5            # (2)

As you work with servos and send them a PWM rotation signal, you will
find that they behave asynchronously. That is, the code does not block until
the servo finishes its rotation. If we intend to make many rapid servo
movements that you want to complete in full, we must add a short delay to
ensure the servo has time to complete the rotation. An example of this is
found in the sweep() function we will cover shortly. The delay of 0.5 seconds
is only a suggestion, so feel free to experiment with different numbers.

Starting at line 3, we define three basic functions to control our servo:

 def left():                                               # (3)

       pi.set_servo_pulsewidth(SERVO_GPIO, LEFT_PULSE)

 def center():

       pi.set_servo_pulsewidth(SERVO_GPIO, CENTER_PULSE)

 def right():

       pi.set_servo_pulsewidth(SERVO_GPIO, RIGHT_PULSE)

The left() function simply sets the PWM pulse width to LEFT_PULSE on the
servo's GPIO pin using the PiGPIO set_servo_pulsewidth() method. This is a
convenience function for servo control offered by PiGPIO as a practical
alternative to using the set_PWM_dutycycle() and set_PWM_frequency() methods that
we have seen in many previous chapters. We'll say more about these
methods after we've reviewed the code.

The center() and right() functions perform their respective equivalent action
to left().

If you rotate your servo to a specified angle and try to move the horn with
your hand, you will notice that the servo resists the change. This is because



the servo is continuously receiving (at a rate of 50 Hz) the last pulse set via
set_servo_pulsewidth(), so it resists any attempt to change its set position.

In the previous section, when we wired the servo to your Raspberry Pi, we mentioned the
servo's maximum current of ~400+mA. The preceding paragraph is an example where
this maximum current is drawn by the servo. When the servo is receiving its pulse width
instruction, it resists any force to change its position, resulting in more current usage. It
is similar in principle to the stall current of a DC motor we discussed back in Chapter 7,
Turning Things On and Off.

If you set the servo's pulse width to zero, as we do in the idle() function
shown at line 4, you will now find that you can freely rotate the servo by
hand with little force. When my test servo was idle (or at rest), it used
approximately 6.5 mA:

   def idle():                                      # (4)

      pi.set_servo_pulsewidth(SERVO_GPIO, 0)

So far, we've seen how to make the servo rotate to the left, center, and right,
but what if we want to rotate it to a particular angle? Easy(-ish), we just need
a little math, as shown in the angle() function at line 5:

  def angle(to_angle):                                   # (5)

      # Restrict to -90..+90 degrees

      to_angle = int(min(max(to_angle, -90), 90))

      ratio = (to_angle + 90) / 180.0                    # (6)

      pulse_range = LEFT_PULSE - RIGHT_PULSE

      pulse = LEFT_PULSE - round(ratio * pulse_range)    # (7)

      pi.set_servo_pulsewidth(SERVO_GPIO, pulse)

The angle() function takes an angle in the range -90 to +90 degrees (0
degrees being center), works out the ratio of our input angle relative to the
180-degree range of our servo at line 6, before deriving the corresponding
pulse width at line 7. This pulse width is then sent to the servo and it will
adjust its angle accordingly.

Finally, we encounter the sweep() function at line 10. This is the function that
provided the left/right sweeping movement of the servo when you ran this
code:

 def sweep(count=4):                        # (10)

      for i in range(count):

          right()



          sleep(MOVEMENT_DELAY_SECS)

          left()

          sleep(MOVEMENT_DELAY_SECS)

In this function, we see the use of sleep(MOVEMENT_DELAY_SECS), which is
necessary to give the servo time to complete each rotation request due to the
asynchronous nature of servos. If you were to comment out the
two sleep() calls, you will find that the servo rotates to the left and stops.
This happens because as the for loop iterates (without sleep()),
each left() call overrides the previous right() call, and so on, and
it's left() that is called last before the loop completes.

We've just seen how to control a servo using PiGPIO and its servo-orientated PWM
function, set_servo_pulsewidth(). If you are interested in how a servo implementation looks
with the set_PWM_frequency() and set_PWM_dutycycle() functions, you'll find a file in the
chapter10 folder named servo_alt.py. It's functionally equivalent to the servo.py code we
have just covered.

This now concludes our servo examples. The knowledge you have learned
together with the code examples will provide you with everything you need
to start using servos in your own projects! Our focus has been on using
angular motion servos; however, the core of what you have learned will also
be adaptable with some trial and error and experimenting (mostly around
identifying the correct pulse widths) for use with a continuous rotation
servo, which I'll briefly mention in the next section.

Let's conclude our discussion of servos with a brief consideration of the
different types of servos.

Different types of servos

Our example used a common 3-wire, 180-degree angular servo. While this is
a very common type of servo, there are other variations as
well, including continuous rotation servos, servos with more than three
wires, and special purpose servos:

Continuous rotation servos: Have 3 wires and work on the same
PWM principles as a 3-wire angular servo, except the PWM pulse



width determines the rotational direction (clockwise/counter-
clockwise) and speed of the servo.

Due to their internal control circuitry and gearing, continuous rotation servos are a
convenient low-speed/high-torque alternative to a DC motor and H-Bridge controller
(which we will be covering in the next section).

4-wire servos: These come with one set of three wires and a fourth
loose wire. This fourth wire is an analog output of the servo that can be
used to detect the angle. It's useful if you need to know your servo's
resting angle when you start your program.

Servos track their position using an embedded potentiometer. This fourth wire is
attached to such a potentiometer.

Special purpose or heavy-duty industrial use servos: Have different
wiring configurations and usage requirements – for example, they may
not have the internal circuitry to decode PWM signals and require the
user to supply and create the circuit to perform this function.

We have now learned how common hobby-style servos work, and also
discovered how to set their angle of rotation in Python using PWM. In the
next section, we will learn more about DC motors and how to control them
using an IC known as an H-Bridge.

Using an H-Bridge IC to control a
motor
In Chapter 7, Turning Things On and Off, we learned how to use a transistor to
turn a DC motor on and off, and we also saw how to control the motor's
speed using PWM. One limitation of our single transistor circuit was that the
motor only rotated in one direction. In this section, we will explore a way to
let us spin our motor in both the forward and backward directions – using
what is known as an H-Bridge circuit.

The H in H-Bridge comes from the perception that a basic H-Bridge circuit schematic
(created from four individual transistors) make a letter H.



If you search around sites such as eBay for an H-Bridge module, you will
identify many ready-made modules for the same purpose that we will cover
in this section. What we will do is build a replica module on our breadboard.
Once you have your breadboard replica working and understand how it
works, you will be in a position to understand the construction of these
ready-made modules.

We can create an H-Bridge to drive our motor in a few ways:

Just use a pre-built module (modules and ICs may also be called or
labeled motor drivers, or motor controllers). This is the easiest way.

Create an H-Bridge circuit using discrete components – for example,
four transistors, many diodes, a handful of resistors, and a lot of wire to
connect them all. This is the hardest way.

Use an IC (that internally combines all the necessary discrete parts).

A servo, just like we used in the previous section, is made up of a DC motor connected to
an H-Bridge-style circuit that allows the motor to move forward and backward to create
the servo's left and right rotation.

We will opt for the last option and use an L293D, which is a common and
low-cost H-Bridge IC that we can use to build a motor controller circuit.

Here are the basic specifications for the L293D extracted from its datasheet:

Continuous current of 600 mA, 1.2 A peak/pulsed. As a reminder, we
explored motors and current use in Chapter 7, Turning Things On and
Off.
It can control a motor with a voltage between 4.5 volts and 36 volts.
It includes internal fly-back diodes, so we do not need to add our own.
This is what the D means in L293D. If you need a refresher on fly-back
diodes, please also see Chapter 7, Turning Things On and Off.
It comprises two channels, so it is capable of driving two DC motors
simultaneously.

If you are looking to purchase a different motor driver IC for a project (for example, if
you need one with more current), remember to check the datasheet to see whether it has
fly-back diodes embedded, or else you will need to provide your own.



Let's build our circuit to control our motors.

Building the motor driver circuit

In this section, we will build our H-Bridge circuit that we will use to control
two DC motors. The following schematic describes the circuit we will
create. While this circuit looks busy, most of our work will be simply
connecting the legs of the L293D IC to our Raspberry Pi, power source, and
motors:

Figure 10.5 – L293D and motor schematic diagram

As there are a lot of wire connections to get through, we will build this
circuit on our breadboard in four parts.

We will be using an IC in our circuit build. Many ICs (including the L293D) are
sensitive to static electricity discharge (ESD), and if exposed to static discharge, they
can be damaged. As a general rule, you should avoid touching the pins/legs of an IC



with your fingers so that any static charge you have in your body does not get
discharged to the IC.

Let's get started with the first part, as illustrated in the following diagram:





Figure 10.6 – L293D breadboard layout (Part 1 of 3)

Here are the steps to follow to start our breadboard build. The step numbers
match the numbers in black circles in Figure 10.6:

1. Start by placing the L293D IC in your breadboard, making sure that
that IC is orientated correctly with pin/leg 1 facing toward the top of
your breadboard. Pin 1 of an IC is commonly indicated by a small
circular indentation or dot beside the pin. In our illustration, this dot is
white for visibility; however, it'll most likely be the same color as the
casing on your IC. In the absence of a dot, there is also commonly a
cutout section on one end of an IC. Pin 1 is the top-left pin when you
hold the IC with the cutout facing away from you.

2. Connect a 5-volt pin on your Raspberry Pi to the positive rail of the
left-hand side power rail.

3. Connect a GND pin on your Raspberry Pi to the negative rail of the
left-hand side power rail.

4. Connect GPIO 18 to pin 1 of the L293D.
5. Connect GPIO 23 to pin 2 of the L293D.
6. Connect GPIO 24 to pin 7 of the L293D.

7. Connect a jumper lead to pin 3 of the L293D. The other end of this lead
(labeled Output 1Y) is not connected to anything for the moment.

8. Connect a jumper lead to pin 6 of the L293D. The other end of this lead
(labeled Output 2Y) is not connected to anything for the moment.

9. Using a jumper wire, connect pin 4 and pin 5 on the L293D together.
10. Finally, connect pin 4 and pin 5 of the L293D to the negative rail of the

left-hand side power rail.

The bulk of the work we just performed involved the wiring of channel 1 of
the L293D. As a reminder, the L293D has two output channels, which, for
the content in this section, means we can control two DC motors.

If you refer back to Figure 10.6, you will notice the wires (placed at steps 7
and 8) comprise the output for channel 1. Later in this section, we will attach
a motor to these wires. Furthermore, in the diagram, you will notice that
GPIOs 18, 23, and 24 are labeled as Channel 1 Control GPIOs. We will learn



how these GPIOs are used to control the larger channel 1 motor when we
discuss the code that accompanies this circuit.

Moving on, the next part of our build largely involves wiring up channel 2 of
the L293D. This is more or less a mirror of the wiring we just performed:





Figure 10.7 – L293D breadboard layout (Part 2 of 3)

Here are the steps to follow to complete the second part of our breadboard
build. The step numbers match the numbers in black circles in Figure 10.7:

1. Connect pin 16 of the L293D to the positive rail of the left-hand side
power rail. This 5-volt connection to pin 16 provides the power for the
IC's internal circuitry – it is not the power source for the channel
outputs (that is our motors). We will connect the external power source
to the IC in part 3 of the build for powering the channels' motors.

2. Connect GPIO 16 to pin 9 of the L293D.
3. Connect GPIO 20 to pin 10 of the L293D.
4. Connect GPIO 21 to pin 15 of the L293D.
5. Connect a jumper lead to pin 14 of the L293D. The other end of this

lead (labeled Output 4Y) is not connected to anything for the moment.
6. Connect a jumper lead to pin 11 of the L293D. The other end of this

lead (labeled Output 3Y) is not connected to anything for the moment.
7. Using a jumper wire, connect pin 12 and pin 13 on the L293D together.
8. Finally, connect pin 12 and pin 13 of the L293D to the negative rail of

the right-hand side power rail.

Now that we have wired the channel 2 output, our third task is to connect the
external power supply:



Figure 10.8 – L293D breadboard layout (Part 3 of 3)

Here are the steps to follow to complete the third part of our breadboard
build. The step numbers match the numbers in black circles in Figure 10.8:

1. Connect the positive output terminal of your power supply to the
positive rail of the right-hand side power rail.

2. Connect the negative output terminal of your power supply to the
negative rail of the right-hand side power rail.

3. Connect pin 8 of the L293D to the positive rail of the right-hand side
power rail. Pin 8 of the L293D provides the input power used to drive
the output channels.

4. Finally, using a jumper wire, connect the negative rails of the left-hand
side and right-hand side power rails.

This is our breadboard layout complete. However, there is one final task
where we connect our motors. Following the example in the following
diagram, you can connect a motor to each output channel:



Figure 10.9 – L293D motor connections

Well done! That was a lot of wiring. I imagine that the tangle of wires you
now have on your breadboard does not look nearly as graceful as the
illustrations! Please do take the time to double-check your wirings for this
circuit, as an incorrectly placed wire will prevent the circuit from working as
intended.

During our circuit build, in part 3, step 3, we connected an external 5-volt
power source to pin 8 of the L293D. This is the power used to drive each
output channel, and hence our motors. If you ever wish to use motors that
require a voltage different to 5 volts, you can alter this supply voltage to suit
your needs, subject to the condition that the source voltage for the L293D
must be within the range of 4.5 volts to 36 volts. Also remember (as
mentioned at the start of this section) that your motors should not draw more
than a 600 mA continuous current (fully on) or 1.2 A peak current (for
instance, when using PWM, which we will cover when we get to the code).

If you read a datasheet for the L293D, it may be entitled Quadruple Half-H Drivers.
Datasheets for driver type ICs can have all sorts of different titles and wordings. The
important point here is that to drive our motor forward and backward, we require a full
H-Bridge circuit, hence, for the L293D: Quad=4 and half=0.5, so 4 x 0.5 = 2 – that is, 2
full H-Bridges – therefore, we can control 2 motors.

Once you have created your breadboard circuit and connected your motors,
we will run the example code and discuss how it works.



Running the example H-Bridge code to control a
motor

Now that you have created your H-Bridge driver circuit and connected your
motors, let's run the code that will make the motors spin.

There are two files for this section, and they can be found in
chapter10/motor_class.py and chapter10/motor.py. Run the code found
in chapter10/motor.py and your motors will turn on, change speeds, and change
direction.

Place a piece of tape on the shaft of your motors to make it easier to see when they
rotate and in what direction.

When you have confirmed that your circuit works with the example code,
we will next proceed and discuss the code. Since the L293D can drive two
motors, the common code has been abstracted out into motor_class.py, which
is imported and used by motor.py to drive our two individual motors.

We'll start by looking at motor.py.

motor.py

Starting at line 1, we import PiGPIO and the Motor class defined in the
motor_class.py file, before defining several variables describing how we are
connecting the L293D to our Raspberry Pi's GPIO pins:

import pigpio                    # (1)

from time import sleep

from motor_class import Motor

# Motor A

CHANNEL_1_ENABLE_GPIO = 18       # (2)

INPUT_1Y_GPIO = 23 

INPUT_2Y_GPIO = 24

# Motor B

CHANNEL_2_ENABLE_GPIO = 16       # (3)

INPUT_3Y_GPIO = 20

INPUT_4Y_GPIO = 21



Referring back to Figure 10.3 and Figure 10.4, if we consider the Motor A
(channel 1) side of the circuits, we see that the logic pins are connected to
GPIOs 23 and 24 at line 2 – INPUT_1Y_GPIO = 23 and INPUT_2Y_GPIO = 24. These
logic pins (together with the enable pin that we will cover shortly) are used
to set the state and rotational direction of the motor. The truth table for these
states is shown as follows.

This table was sourced from the L293D datasheet and reformatted and
supplemented to match our code and circuit:

Row
#

Enable
GPIO

Logic 1
GPIO

Logic 2
GPIO  Motor Function

1 HIGH or > 0%
duty cycle Low High Turns right

2 HIGH or > 0%
duty cycle High Low Turns left

3 HIGH or > 0%
duty cycle Low Low Break

4 HIGH or > 0%
duty cycle High High Break

5 LOW or 0%
duty cycle N/A N/A Motor off



 

The L293D has two enable pins – one for each channel (that is, one for
each motor) – for instance, CHANNEL_1_ENABLE_GPIO = 18 at line 3 in the preceding
code. The enable pins are like a master switch for each channel. When the
enable pin is set high, it turns the associated channel on, thus applying power
to the motor. Alternatively, we can control the speed of a motor if we instead
pulse the enable pin using PWM. We'll see the code that works with the logic
and enables pins shortly when we explore the motor_class.py file.

Next, we will create a single instance of pigpio.pi(), as shown in line 4, and
then we will create two instances of Motor to represent our two physical
motors:

pi = pigpio.pi()                 # (4)

motor_A = Motor(pi, CHANNEL_1_ENABLE_GPIO, INPUT_1Y_GPIO, INPUT_2Y_GPIO)

motor_B = Motor(pi, CHANNEL_2_ENABLE_GPIO, INPUT_3Y_GPIO, INPUT_4Y_GPIO)

After we have created the motor_A and motor_B classes, we perform a few
actions with these class to control the motors, as shown in the following
code, starting at line 5 – this is what you witnessed in the previous section
when you ran the code:

 print("Motor A and B Speed 50, Right") 

 motor_A.set_speed(50)                                # (5)

 motor_A.right()

 motor_B.set_speed(50)

 motor_B.right() 

 sleep(2)

 #... truncated ... 

 print("Motor A Classic Brake, Motor B PWM Brake")

 motor_A.brake()                                      # (6) 

 motor_B.brake_pwm(brake_speed=100, delay_millisecs=50)

 sleep(2)

Take note of the braking at line 6 and observe the motors. Did one motor
brake better than the other? We will discuss this further when we cover the
two brake functions toward the end of the next section.

Let's move on and look at motor_class.py. This is where the code that
integrates our Raspberry Pi with the L293D is found.



motor_class.py

First, we see the Motor class definition and its constructor:

class Motor:

  def __init__(self, pi, enable_gpio, logic_1_gpio, logic_2_gpio):

    self.pi = pi

    self.enable_gpio = enable_gpio

    self.logic_1_gpio = logic_1_gpio

    self.logic_2_gpio = logic_2_gpio

    pi.set_PWM_range(self.enable_gpio, 100) # speed is 0..100       # (1)

    # Set default state - motor not spinning and 

    # set for right direction.

    self.set_speed(0) # Motor off                                   # (2)

    self.right()

At line 1, we are defining the PiGPIO PWM duty cycle range for the enable
pin to be in the range 0..100. This defines the maximum range value (that is,
100) that we can use with the set_speed() function that we'll come to shortly.

The range 0..100 means we have 101 discrete integer PWM steps, which
maps conveniently to a 0% to 100% duty cycle. If you specify a higher
number, this does not mean more duty cycles (or more motor speed); it just
changes the granularity of the steps – for example, the default PWM range of
0..255 gives us 256 discrete steps, where 255 = 100% duty cycle.

Remember what we're about to discuss covers one channel (one motor) of the L293D IC
circuit. Everything we cover applies to the other channel too – it's just the GPIO pins
and IC pins that change.

Our constructor finishes by initializing the motor to be off (zero speed) and
defaults the motor to the right rotational direction, as shown in the preceding
code at line 2.

Next, we encounter several functions that we use to make our motor(s) spin.
We see at line 3 and line 4 the right() and left() methods, which alter the
high/low states of the logic pins of the L293D, according to rows 1 and 2 in
the preceding table:

 def right(self, speed=None):           # (3)

     if speed is not None:



         self.set_speed(speed)

     self.pi.write(self.logic_1_gpio, pigpio.LOW)

     self.pi.write(self.logic_2_gpio, pigpio.HIGH)

 def left(self, speed=None):           # (4)

     if speed is not None:

         self.set_speed(speed)

     self.pi.write(self.logic_1_gpio, pigpio.HIGH)

     self.pi.write(self.logic_2_gpio, pigpio.LOW)

We can check whether our motor is set to rotate left or right by querying the
current states of the logic pins, as shown in is_right() at line 5. Notice that
the queried GPIO states in is_right() match the states set in right():

   def is_right(self):                              # (5)

       return not self.pi.read(self.logic_1_gpio)   # LOW 

              and self.pi.read(self.logic_2_gpio)   # HIGH

We see the use of  set_PWM_dutycycle() in the set_speed() method in the
following code at line 6, where we set the speed of our motor by pulsing the
enable pin of the L293D. Pulsing the enable pin is done using the same basic
principles we used back in Chapter 7, Turning Things On and Off, when we
pulsed a transistor to set our motor's speed:

    def set_speed(self, speed):                      # (6)

        assert 0<=speed<=100

        self.pi.set_PWM_dutycycle(self.enable_gpio, speed)

You can stop the motor by setting the speed to 0, which effectively is cutting
off the motor's power (0% duty cycle = pin low).

Moving forward, we find two methods named brake() and brake_pwm() at lines
7 and 8, which can be used to stop the motor quickly. The difference
between braking and stopping a motor by cutting its power (that
is, set_speed(0)) is that set_speed(0) allows the motor to slow down
gradually over time – which is the state at row 5 in the preceding table:

    def brake(self):                # (7)

        was_right = self.is_right() # To restore direction after braking

        

        self.set_speed(100)

        self.pi.write(self.logic_1_gpio, pigpio.LOW)

        self.pi.write(self.logic_2_gpio, pigpio.LOW)

        self.set_speed(0)



        if was_right:

            self.right()

        else:

            self.left()

When you ran this code in the previous section, and if you experiment with
the two brake functions on your own, my guess is that you will
find brake() does not work well (if at all), while the brake_pwm() function does:

    def brake_pwm(self, brake_speed=100, delay_millisecs=50):    # (8)

        was_right = None # To restore direction after braking

        if self.is_right(): 

            self.left(brake_speed)

            was_right = True

        else:

            self.right(brake_speed)

            was_right = False

        sleep(delay_millisecs / 1000)

        self.set_speed(0)

        if was_right:

            self.right()

        else:

            self.left()

Let's discuss why we have defined two different braking methods and why
one works better than the other.

The implementation of brake() is the classic way a motor brake is
implemented, where both logic GPIOs are set high or low together, as in
rows 3 or 4 in the preceding table. The catch, however, is that the
performance of this logic can vary depending on the IC you are using (how
it's constructed internally), your motor, and the voltage and current use are
using. For our example, we are using a small motor (with no load on its
shaft), small voltage and currents, and an L293D IC. The net of all this is
that classic braking does not work well, if at all.

We're using the L293D IC because of its popularity, availability, and low cost. It's been
in production for many years, and you will have no problem finding example circuits and
code based around this IC for all sorts of applications. It's not the most efficient IC,
however. This is a contributing factor in classic braking not working in some scenarios. 

The break_pwm(reverse_speed, delay_secs) implementation takes a different and
more reliable approach to braking by applying a small and opposite voltage
to the motor. You can use the brake_speed and delay_millisecs parameters to tune
the braking if required – too little speed and delay and the brake will not
work, too much and the motor will reverse direction.



Have you noticed that at full speed (that is, set_speed(100)), your motor spins slower than
if it were connected directly to 5 volts? There is a ~2 voltage drop inherent in the
L293D. Even though Vcc1 (motor power source) is connected to 5 volts, the motor is not
getting this full 5 volts (it's more like ~3 volts). If you are using a variable power supply
(that is, not a 3.3 V/5 V breadboard power supply), you can increase the input voltage
to Vcc1 to around 7 volts. This will then see the motor getting around 5 volts (you can use
your multimeter to verify this).

Congratulations! You have just learned how to operate a servo and master
the control of a DC motor in terms of speed and the direction of braking. The
circuits, code, and skills you have just acquired can be adapted to many
applications where you need to create motion and angular movement – for
example, a robotic car or arm. You could even use these skills to retrofit
motorized toys and other motorized gadgets and make them controllable by
your Raspberry Pi.

If you would like to extend your knowledge further, you might like to
explore how to create an H-Bridge circuit from individual components –
such as transistors, resistors, and diodes. While there are various ways to
accomplish this circuit, we covered the core basics in terms of concepts and
components between this chapter and our use of transistors back in Chapter 7,
Turning Things On and Off.

Well done! We covered a lot in this section as we learned how to use an
L293D H-Bridge to make a DC motor spin, reverse direction, and brake. In
the next section, we will look at an alternative use of the L293D and see how
to use it to control a stepper motor.

Introduction to stepper motor
control
Stepper motors are a unique type of motor in terms of their precision and
torque. Similar to a DC motor, a stepper motor can rotate in both directions
continuously, while they can be precisely controlled similar to a servo.



In the following diagram is a 28BYJ-48 stepper motor, together with
headpins that can be used to connect the motor to a breadboard:

Figure 10.10 – 28BYJ-48 stepper motor

Stepper motor theory and practice can get complex quickly! There are
different forms and types of stepper motors and many variables, such as
stride angles and gearing, that all need to be accounted for, plus various
ways to wire and control them. We can't possibly cover all these parameters
here, nor can we go into the low-level details of how stepper motors work.

Instead, we will cover the practical operation of a common and readily
available stepper motor, a 28BYJ-48. Once you understand the basic
principles as they apply to a 28BYJ-48, you will be well-positioned to
broaden your knowledge of stepper motors.

Controlling stepper motors can be confusing and fiddly when you first start using them.
Unlike DC motors and servos, you need to appreciate how stepper motors work at both
a mechanical and code level to control them.

The basic specifications for our reference 28BYJ-48 are as follows:

5 volts (make sure your stepper is 5 volts because the 28BYJ-48 also
comes in 12 volts).
A stride angle of 64, a 1:64 gearing ratio, giving 64 x 64 = 4,096 steps
per 360 degree revolution.



Using the stride angle, gearing ratio, and sequence, we can calculate the
number of logical steps needed to rotate our stepper motor 360 degrees: 64 x
64 / 8 = 512 steps.

Next, we will connect our stepper motor to our Raspberry Pi.

Connecting the stepper motor to the L293D circuit

To connect our stepper motor to our Raspberry Pi, we are going to reuse our
L293D circuit, as shown in Figure 10.8 in the previous section. Here is what
we need to do:

Figure 10.11 – 28BYJ-48 stepper motor wiring connection

The following steps match the numbering shown in Figure 10.11. Remember
that we are starting with the circuit you completed previously in the
section entitled Building the motor driver circuit and shown in Figure 10.8:

In steps 2 through 5, we will connect the stepper motor in our breadboard circuit. A
suggestion is to use header pins (as pictured in Figure 10.10) to connect your motor to a



run of vacant rows on your breadboard, and then connect the output wires from the
L293D to the appropriate row matching the wire colors mentioned in the steps.

1. If you have not done so already, disconnect the two DC motors from the
existing circuit.

2. Connect the orange wire of your stepper motor to the wire labeled
Output 4Y in Figure 10.8.

3. Connect the yellow wire of your stepper motor to the wire labeled
Output 3Y in Figure 10.8.

4. Connect the pink wire of your stepper motor to the wire labeled Output
2Y in Figure 10.8.

5. Connect the blue wire of your stepper motor to the wire labeled Output
1Y in Figure 10.8.

In our example scenario, we are using our L293D H-Bridge to drive our
stepper motor as a bipolar stepper motor. You will come across the terms
bipolar and unipolar in relation to stepper motors. These terms relate to how
the motor is wired, and this influences how you will control them. A
discussion of the differences between bipolar and unipolar stepper motors
can quickly get complex; however, a simplified distinction at this stage of
learning is as follows:

A bipolar stepper motor requires a driving circuit that is capable of
reversing the current flow.
A unipolar stepper motor does not require a circuit that is capable of
reversing the current flow.

In our example with bipolar wiring, we use an H-Bridge circuit because it is
capable of reversing current flow to a coil (for example, this is how we made
our DC motor reverse direction in the previous section).

The ULN2003 IC is a popular, low-cost Darlington transistor array (with built-in fly-
back diodes); you could also use it to drive your stepper motor as a unipolar stepper
motor. In this setup, you would use the red wire connected to +5 volts because
the ULN2003 is unable to reverse current.

With our stepper motor connected, we can continue on to control it with
code.



Running and exploring the stepper motor code

The code we are about to run can be found in the chapter10/stepper.py file. I
recommend reviewing the source code before proceeding so that you have
an overall idea of what the file contains.

When you run the code found in the chapter10/stepper.py file, your stepper
motor should rotate a complete 360 degrees in one direction, and then back
again.

Place a piece of tape on the shaft of your stepper motor to make it easier to see when it
rotates and in what direction.

Starting at the top of the source file, we define all our GPIO variables,
including our enable pins at line 1, plus variables starting at line 2 relating to
our stepper motor coil wires. These wires must be identified and ordered
correctly, as coil wire order matters!

CHANNEL_1_ENABLE_GPIO = 18                                # (1)

CHANNEL_2_ENABLE_GPIO = 16

INPUT_1A_GPIO = 23 # Blue Coil 1 Connected to 1Y          # (2)

INPUT_2A_GPIO = 24 # Pink Coil 2 Connected to 2Y

INPUT_3A_GPIO = 20 # Yellow Coil 3 Connected to 3Y

INPUT_4A_GPIO = 21 # Orange Coil 4 Connected to 4Y

STEP_DELAY_SECS = 0.002                                   # (3)

We will see later in code the use of STEP_DELAY_SECS at line 3 to add a slight
delay in between coil steps. A higher delay will result in a slower rotation of
the stepper motor's shaft; however, too small a number and the shaft may not
rotate at all or the rotation may be erratic and stutter. Feel free to experiment
with different delay values to suit your needs.

Next, starting at line 4, we group our coil GPIOs into a Python list (array)
and initialize these GPIOs as outputs at line 5. We're storing the GPIOs in a
list because we will be iterating over these GPIOs later when we use
the rotate() function. We also have the off() function at line 6 that we use to
turn off all the coils:

coil_gpios = [                             # (4)

    INPUT_1A_GPIO,



    INPUT_2A_GPIO,

    INPUT_3A_GPIO,

    INPUT_4A_GPIO

]

# Initialise each coil GPIO as OUTPUT.

for gpio in coil_gpios:                    # (5)

    pi.set_mode(gpio, pigpio.OUTPUT)

def off():

    for gpio in coil_gpios:                # (6)

       pi.write(gpio, pigpio.LOW) # Coil off

off() # Start with stepper motor off.

At line 7, we're setting the two enable GPIO pins HIGH in code because we are
reusing the circuit from our previous DC motor control example. The
alternative non-code approach would be to connect the L293D EN1 and EN2
pins directly to +5 volts (that is, pull them HIGH manually):

# Enable Channels (always high)

pi.set_mode(CHANNEL_1_ENABLE_GPIO, pigpio.OUTPUT)      # (7)

pi.write(CHANNEL_1_ENABLE_GPIO, pigpio.HIGH)

pi.set_mode(CHANNEL_2_ENABLE_GPIO, pigpio.OUTPUT)

pi.write(CHANNEL_2_ENABLE_GPIO, pigpio.HIGH)

Starting at line 8, we define two stepping sequences in a multi-dimension (2
x 2) array named COIL_HALF_SEQUENCE and COIL_FULL_SEQUENCE, and we thus
encounter the parts of the code where it starts to become obvious that stepper
motor control is more complex than DC motor or servo control!

A stepping sequence defines how we must turn on (energize) and off (not
energized) each coil in the stepper motor to make it step. Each row in the
sequence has four elements, each relating to a coil:

COIL_HALF_SEQUENCE = [             # (8)

    [0, 1, 1, 1],

    [0, 0, 1, 1],   # (a)

    [1, 0, 1, 1],

    [1, 0, 0, 1],   # (b)

    [1, 1, 0, 1],

    [1, 1, 0, 0],   # (c)

    [1, 1, 1, 0],

    [0, 1, 1, 0] ]  # (d)

COIL_FULL_SEQUENCE = [

    [0, 0, 1, 1],   # (a)

    [1, 0, 0, 1],   # (b)

    [1, 1, 0, 0],   # (c)

    [0, 1, 1, 0] ]  # (d)



A sequence with eight steps is known as a half-step sequence, while a full-
step sequence has four rows and is a subset of the half-sequence (match up
the (a), (b), (c), and (d) rows in the preceding code).

A half-sequence will give you more resolution (for example, 4,096 steps for
a 360-degree revolution), while a full-step sequence will give you half the
resolution (2,048 steps) but twice the stepping speed.

A stepping sequence for a stepper can usually be found in its datasheet – but
not always, as our reference 28BYJ-48 datasheet mentioned in the Technical
requirements section proves, so sometimes some research may be necessary.

If a stepper motor is not rotating, but it is making a sound and vibrating, it's a sign that
the stepping sequence and coil order is incorrectly matched. This is a common
frustration with stepper motors when you try to just connect them blindly and hope they
work. To avoid this trial-and-error approach, take the time to identify your stepper
motor type and how it is being wired (for example, bipolar or unipolar), and work out
the coil numbering and what a suitable coil stepping sequence looks like. Consulting
your stepper motor's datasheet is the best place to start.

Next, at line 9, we defined the global variable, sequence = COIL_HALF_SEQUENCE, to
use a half-step sequence when stepping our motor. You can change this
to sequence = COIL_FULL_SEQUENCE to use a full-step sequence – all other code
remains the same:

sequence = COIL_HALF_SEQUENCE       # (9)

#sequence = COIL_FULL_SEQUENCE

At line 10, we have the rotate(steps) method, which is where all the magic
happens, so to speak. Examining and understanding what this method does is
the key to understanding how to control our stepper motor. The steps
parameter can be a positive or a negative number to rotate the stepper motor
in the reverse direction:

# For rotate() to keep track of the sequence row it is on.

sequence_row = 0 

def rotate(steps):                              # (10)

    global sequence_row

    direction = +1

    if steps < 0:

        direction = -1



The core of the rotate() function is within the two for loops, starting at line
11:

# rotate(steps) continued...

    for step in range(abs(steps)):                # (11)

      coil_states = sequence[sequence_row]        # (12)

      for i in range(len(sequence[sequence_row])):

          gpio = coil_gpios[i]                    # (13)

          state = sequence[sequence_row][i]       # (14)

          pi.write(gpio, state)                   # (15)

          sleep(STEP_DELAY_SECS)

As the code loops for step iterations, we get the next coil state's form,
sequence[sequence_row], at line 12 (for example, [0, 1, 1, 1]), before looping
through and getting the corresponding coil GPIO at line 13, and its HIGH/LOW
state at line 14. At line 15, we set the HIGH/LOW state of the coil with pi.write(),
which makes our motor move (that is, step), before sleeping for a short
delay.

Next, starting at line 16, the sequence_row index is updated based on the
direction of rotation (that is, whether the steps parameter was positive or
negative):

# rotate(steps) continued...

      sequence_row += direction            # (16)

      if sequence_row < 0:

          sequence_row = len(sequence) - 1

      elif sequence_row >= len(sequence):

          sequence_row = 0

At the end of this block of code, if there are more steps to complete, the code
then goes back to line 11 for the next for steps in ... iteration.

Finally, at line 17, we come to the part of the code that made our stepper
motor rotate when we ran the example. Remember, if you switch line 9 to be
sequence = COIL_FULL_SEQUENCE, then the number of steps will be 2048:

if __name__ == '__main__':

    try:                                                   #(17)

        steps = 4096 # Steps for HALF stepping sequence.

        print("{} steps for full 360 degree rotation.".format(steps))

        rotate(steps) # Rotate one direction

        rotate(-steps) # Rotate reverse direction

    finally:



        off() # Turn stepper coils off

        pi.stop() # PiGPIO Cleanup

Congratulations! You have just completed a crash course on stepper motor
control.

I understand that if you are new to steppers, there is some multi-dimensional
thinking required and that you have been introduced to many concepts and
terms that we have not been able to cover in detail. Stepper motors will take
time to understand; however, once you grasp the basic process of controlling
one stepper motor, then you are well on your way to understanding the
broader concepts in more detail.

There are many stepper motor tutorials and examples scattered across the internet. The
goal of many examples is to just make the stepper motor work, and it's not always
clearly explained how this is being achieved due to the underlying complexity. As you
read up on stepper motors and explore code examples, remember that the definition of a
step can vary greatly and depends on the context in which it is being used. This is a
reason why two examples may cite significantly different step numbers for the same
stepper motor.

Summary
In this chapter, you learned how to use three common types of motors to
create complex movement with your Raspberry Pi – a servo motor for
creating an angular moment, a DC motor with an H-Bridge driver to create
direction movement and speed control, and a stepper motor for precision
movement. If you have grasped the general concepts of each of these types
of motors, then you deserve a pat on the back! This is an achievement. While
motors are simple in principle and their movement is something we take for
granted daily in everyday appliances and toys, as you have discovered, there
is a lot going on behind the scenes to make that movement occur.

What you have learned in this chapter, together with the example circuits
and code, provides you with a foundation that you can use to start building
your own applications where movement and motion are required. A simple
and fun project could be to create a program to control a robotic car or



robotic arm – you'll find DIY kits and robotic parts for cars and arms on sites
such as eBay.

In the next chapter, we will explore ways we can measure distance and
detect movement with our Raspberry Pi, Python, and various electronic
components.

Questions
As we conclude, here is a list of questions for you to test your knowledge of
this chapter's material. You will find the answers in the Assessments section
of the book:

1. Your servo does not rotate fully to the left or right. Why is this and how
can you fix this?

2. Your servo is groaning at one or both of its extreme left/right positions.
Why?

3. What advantage does an H-Bridge provide over a single transistor when
controlling DC motors?

4. You are using an L293D H-Bridge IC. You follow the instructions as
per the datasheet but cannot get your motor to brake. Why?

5. Why do your 5-volt motors spin slower when connected to an H-Bridge
using an L293D compared to connecting the motor directly to a 5-volt
source?

6. You have a stepper motor that will not work – it vibrates, but will not
turn. What could be the problem?

7. Can you drive a stepper motor directly from four Raspberry Pis' GPIO
pins?



Measuring Distance and Detecting
Movement

Welcome to our final core electronics-based chapter. In the previous chapter,
we learned how to control three different forms of motors in complex ways.
In this chapter, we will direct our attention to detecting movement and
measuring the distance with our Raspberry Pi and electronics.

Detecting movement is very useful for automation projects such as turning
on lights when you walk into a room or building, an alarm system, building
counters, or detecting revolutions of a shaft. We will be looking at two
techniques for movement detection, including a Passive Infrared (PIR)
sensor that uses heat detection to detect the presence of a person (or animal),
and a digital Hall-effect sensor that detects the presence of a magnetic field
(or, more liberally, we can say that the Hall-effect sensor can detect when a
magnet moves past it).

Distance measurement is also useful for many projects, from collision
detection circuits to measuring water tank levels. We will be looking at two
forms of distance measurement, including the use of an ultrasonic sound
sensor that can measure distances of around 2 centimeters to 4 meters, and
also an analog Hall-effect sensor that can measure the proximity of a
magnetic field down to millimeters.

Here is what we will cover in this chapter:

Detecting movement with a PIR sensor
Measuring distance with an ultrasonic sensor
Detecting movement and distance with Hall-effect sensors

Technical requirements
To perform the exercises in this chapter, you will need the following:



Raspberry Pi 4 Model B
Raspbian OS Buster (with desktop and recommended software)
Minimum Python version 3.5

These requirements are what the code examples in this book are based on.
It's reasonable to expect that the code examples should work without
modification on Raspberry Pi 3 Model B or a different version of Raspbian
OS as long as your Python version is 3.5 or higher.

You will find this chapter's source code in the chapter11 folder in the GitHub
repository available at https://github.com/PacktPublishing/Practical-Python-Programm
ing-for-IoT.

You will need to execute the following commands in a terminal to set up a
virtual environment and install the Python libraries required for the code in
this chapter:

$ cd chapter11              # Change into this chapter's folder

$ python3 -m venv venv      # Create Python Virtual Environment

$ source venv/bin/activate  # Activate Python Virtual Environment

(venv) $ pip install pip --upgrade        # Upgrade pip

(venv) $ pip install -r requirements.txt  # Install dependent packages

The following dependencies are installed from requirements.txt:

PiGPIO: The PiGPIO GPIO library (https://pypi.org/project/pigpio)
ADS1X15: The ADS11x5 ADC library (https://pypi.org/project/adafruit-
circuitpython-ads1x15)

The electronic components we will need for this chapter's exercises are as
follows:

1 x 1kΩ resistor
1 x 2kΩ resistor
1 x HC-SR501 PIR sensor (datasheet: https://www.alldatasheet.com/datashee
t-pdf/pdf/1131987/ETC2/HC-SR501.html)
1 x A3144 Hall-effect sensor (non-latching) (datasheet: https://www.alldat
asheet.com/datasheet-pdf/pdf/55092/ALLEGRO/A3144.html)
1 x AH3503 Hall-effect sensor (ratiometric) (datasheet: https://www.allda
tasheet.com/datasheet-pdf/pdf/1132644/AHNJ/AH3503.html)

https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://pypi.org/project/pigpio
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://www.alldatasheet.com/datasheet-pdf/pdf/1131987/ETC2/HC-SR501.html
https://www.alldatasheet.com/datasheet-pdf/pdf/55092/ALLEGRO/A3144.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132644/AHNJ/AH3503.html


1 x HC-SR04 or HC-SR04P ultrasonic distance sensor (datasheet: http
s://tinyurl.com/HCSR04DS)
A small magnet for use with the Hall-effect sensors

There are two variations of the HC-SR04 available. The more common HC-SR04, which
outputs 5-volt logic and the HC-SR04P, which can operate at between 3 volts and 5.5
volts. Either module will be suitable for the exercise in this chapter.

Detecting movement with a PIR
sensor
A PIR sensor is a device that can detect infrared light (heat) emitted by an
object (for example, a person). We see these types of sensors all around us in
applications such as security systems and automatic doors and lights that
react to our presence. The passive in PIR means the sensor just detects
movement. To detect what moved and how, you would need an active
infrared device, such as a thermal camera.

PIR sensors come in a few different forms and varieties; however, their basic
usage is the same – they act as a simple digital switch. When they do not
detect movement, they output a digital LOW, and when movement is detected,
they output a digital HIGH.

Shown in the following figure is the HC-SR501 PIR sensor module that we
will be using for our example. Pictured are the top of the module, the
underside, and a common schematic symbol for a PIR sensor:

https://tinyurl.com/HCSR04DS


Figure 11.1 – HC-SR501 PIR sensor module

Some PIR sensors, including our HC-SR501, have an onboard setting and
calibration adjustments on them. These adjustments are used to change the
sensitivity range and triggering mode of the sensor. To use a PIR device
without on-board calibration means we would need to handle sensitivity
adjustments ourselves in code.

In regard to the HC-SR501, its terminals are as follows:

GND: Connection to ground.
Vcc: Connection to a power source between 5 volts and 20 volts.
Data: Digital output that we connect to a GPIO pin. When the PIR
detects movement, this pin goes HIGH; otherwise, it remains LOW in the
absence of movement. The HC-SR501 outputs a 3.3-volt signal, even
though it requires a 5- to 20-volt power source. As we will see next, the
onboard sensitivity adjust, timing adjust trims, and trigger mode jumper
influence how, when, and for how long this data pin remains HIGH when
movement is detected.

The HC-SR501 onboard settings are as follows:



Sensitivity Adjust: Changes the effective movement sensing range
between about 3 meters to about 7 meters. Use a small screwdriver to
rotate this setting's dial.
Time Delay Adjust: How long the data terminal remains HIGH after
movement is detected. The adjustment range is approximately 5
seconds to 300 seconds. Use a small screwdriver to rotate this setting's
dial.
Trigger Mode Jumper: In the presence of continued movement
detection, this jumper setting means that after the time delay expires (as
set by Time Delay Adjust), the data terminal will do the following:

Remain HIGH. This is the repeatable trigger setting, set by placing
the jumper into the H position.
Revert to LOW. This is the single-shot setting, set by placing the
jumper into the L position.

The best settings for your PIR will depend on how you intend to use it and
the environment in which you deploy your sensor. My suggestion is to play
around with the setting adjustments after you complete the circuit build and
run the example code in the subsequent sections to get a feel for how
changing the settings affects the operation of the sensor. Remember to
consult the HC-SR501 datasheet for more information on the sensor and its
onboard settings.

Let's wire up our PIR sensor and connect it to our Raspberry Pi.

Creating the PIR sensor circuit

In this section, we will connect our PIR sensor to our Raspberry Pi. The
following is the schematic diagram of the circuit we are about to build. As
you can see, it has relatively straightforward wiring from the perspective of
the PIR sensor:



Figure 11.2 – PIR sensor module circuit

Let's connect it to our Raspberry Pi as illustrated in the following figure:

Figure 11.3 – PIR sensor circuit breadboard layout



Here are the steps to follow to create your breadboard build. The step
numbers match the numbers in black circles in Figure 11.3:

1. Connect each terminal of your PIR sensor to your breadboard. You will
need three male-to-male jumper cables.

2. Connect a 5-volt pin on your Raspberry Pi to the same breadboard row
used by the PIR's Vcc terminal. PIR sensors only use a little current, so
it will be okay to connect the 5-volt Vcc pin directly to your Raspberry
Pi.

3. Connect a GND pin on your Raspberry Pi to the same breadboard row
used by the PIR's GND terminal.

4. Connect GPIO 21 on your Raspberry Pi to the same breadboard row
used by the PIR's data terminal.

IMPORTANT: Our reference HC-SR501 PIR sensor requires >4.5 volts for its power
(Vcc), and outputs 3.3 volts on its Sig output pin. If you are using a different PIR sensor,
then consult its datasheet and check the output pin voltage. If it is >3.3 volts, you will
need to use a voltage divider or logic level shifter. We will cover this exact scenario in
the next section when we couple a voltage divider with an HC-SR04 sensor to convert its
5-volt output into a Raspberry Pi-friendly 3.3 volts.

Once you have created your circuit, we will proceed and run our PIR
example code, which will let us detect movement.

Running and exploring the PIR sensor code

The code for out PIR circuit is found in the chapter11/hc-sr501.py file. Please
review the source code before proceeding to get a broad understanding of
what this file contains.

The HC-SR501 datasheet stipulates that the sensor needs around 1 minute after power-
on to initialize and stabilize itself. If you try and use the sensor before it becomes stable,
you may receive a few erroneous triggers when you start the program.

Run the hc-sr501.py file in a terminal. When the HC-SR501 detects
movement, the program will print Triggered on the terminal, or Not
Triggered when no movement is detected, as shown in the following output:

(venv) $ python hc-sr501.py 

PLEASE NOTE - The HC-SR501 Needs 1 minute after power on to initialize itself.



Monitoring environment...

Press Control + C to Exit

Triggered.

Not Triggered.

... truncated ...

If your program is not responding as expected, try adjusting one or more of
the Sensitivity Adjustment, Time Delay Adjustment, or Trigger Mode
Jumper settings that we discussed earlier in the section titled Detecting
movement with a PIR sensor.

You can consider the HC-SR501 as a basic switch. It's either on (HIGH) or off
(LOW), just like a common push-button switch. In fact, our code is similar to
the PiGPIO button example presented in the Responding to a button press
with PiGPIO section back in Chapter 2, Getting Started with Python and IoT.
We'll just brush over the core code parts here; however, if you need a deeper
explanation or a refresher, please revisit the PiGPIO sections in Chapter 2,
Getting Started with Python and IoT.

Let's discuss the example code. Firstly, we start on line 1 by setting up our
GPIO pin as an input pin with pull-down enabled, while on line 2, we have
debouncing enabled. Our HC-SR501 module won't actually require the pull-
down to be activated in code, nor will it require the debouncing; however,
I've added it in for completeness:

# ... truncated ...

GPIO = 21

# Initialize GPIO

pi.set_mode(GPIO, pigpio.INPUT)                               # (1)

pi.set_pull_up_down(GPIO, pigpio.PUD_DOWN)

pi.set_glitch_filter(GPIO, 10000) # microseconds debounce     # (2)

Next, on line 3, we define the callback_handler() function, which will get
called whenever the GPIO pin changes its HIGH/LOW state:

def callback_handler(gpio, level, tick):                       # (3)

    """ Called whenever a level change occurs on GPIO Pin.

      Parameters defined by PiGPIO pi.callback() """

    global triggered

    if level == pigpio.HIGH:

        triggered = True

        print("Triggered")

    elif level == pigpio.LOW:



        triggered = False

        print("Not Triggered")

Finally, on line 4, we register our callback function. It's the second
parameter, pigpio.EITHER_EDGE, that causes callback_handler() to be called
whenever GPIO changes to HIGH or LOW:

# Register Callback

callback = pi.callback(GPIO, pigpio.EITHER_EDGE, callback_handler) # (4)

For comparison, in Chapter 2, Getting Started with Python and IoT, for our
push-button example, this parameter was pigpio.FALLING_EDGE, meaning the
callback only got called when the button was pressed, and not when it was
released.

As we have seen, a PIR sensor can only detect the proximity of an object –
for example, is someone near our sensor? – but it cannot give us an
indication of how far or near that object is.

We've now learned how to create and connect a simple PIR sensor circuit to
our Raspberry Pi, and how to use it to detect movement in Python. Armed
with this knowledge, you can now start building your own motion detection
projects, such as turning things on and off when someone or some animal is
detected, by combining the examples from Chapter 7, Turning Things On and
Off, or as an important part of your own alarm and monitoring system.

Next, we will look at a sensor that is capable of estimating distance.

Measuring distance with an
ultrasonic sensor
In the previous section, we learned how to detect movement with a PIR
sensor. As we discovered, our PIR sensor was a digital device that signaled
movement detection by making its output a digital HIGH.



It's time to learn how to measure distance with our Raspberry Pi. There are a
variety of sensors that are capable of performing this task, and they
commonly either work with sound or light. Our example will be based
around the popular HC-SR04 ultrasonic distance sensor (it works on sound),
as pictured in the following figure:

Figure 11.4 – HC-SR04 ultrasonic distance sensor module

A place where you commonly find ultrasonic distance sensors is modern car
bumper bars (they're often little round circles, which is a different form
factor than the HC-SR04 pictured in the preceding figure). These
sensors calculate the distance between your car and a nearby object and, for
example, make a beeper inside your car beep faster and faster as you get
closer and closer to the object

Another common application is for measuring liquid levels, such as in a
water tank. In this scenario, a (waterproof) ultrasonic sensor measures the
distance from, for example, the top of the tank to the water level (the sound
pulse bounces off the water). The measured distance can then be translated
into an estimate of how full the tank is.

Let's take a closer look at our HC-SR04 sensor. The core specifications from
the reference HC-SR04 datasheet are as follows:



Power voltage 5 volts (HC-SR04) or 3 volts to 5.5 volts (HC-SR04P)
Logic voltage 5 volts (HC-SR04) or 3 volts to 5.5 volts (HC-SR04P)
Working current 15 mA, resting current 2 mA
Effective measurement range 2 cm–4 m, with an accuracy of +/- 0.3 cm
A trigger pulse width of 10 µs (10 microseconds). We'll revisit this
pulse width and discuss it more in the section titled HC-SR04 distance
measurement process.

The SC-SR04 has two round cylinders. They are as follows:

T or TX: A transmitter that produces ultrasonic sound pulses
R or RX: A receiver that detects ultrasonic sound pulses

We will discuss how the transmitter and receiver pair work to measure
distance in the next section.

The HC-SR04 has four terminals, which are as follows:

Vcc: The power source (a Raspberry Pi 5-volt pin will be okay given
the max current of 15 mA).
GND: Connection to ground.
TRIG: Trigger input terminal – when HIGH, the sensor sends out
ultrasonic pulses.
ECHO: Echo output terminal – this pin goes HIGH when TRIG is made
HIGH, then transitions to LOW when it detects an ultrasonic pulse.

We will discuss the use of the TRIG and ECHO terminals in the section titled HC-
SR04 distance measurement process.

Now that we understand the basic use of an ultrasonic distance sensor and
the basic properties and layout of the HC-SR04, let's discuss how it works.

How an ultrasonic distance sensor works

Let's see how the transmitter (TX) and receiver (RX) work together to
measure distance. The basic operating principle of an ultrasonic sensor is
illustrated in the following figure:



Figure 11.5 – Ultrasonic distance sensor operation

Here is what happens:

1. First, the sensor sends out an ultrasonic pulse from the transmitter (TX).
2. If there is an object in front of the sensor, this pulse is bounced off the

object and returns to the sensor, and is detected by the receiver (RX).  
3. By measuring the time between transmitting a pulse and receiving it

back, we can calculate the distance between the sensor and the object.

With this high-level understanding of how the sensor works, next, we will go
deeper and discuss how to use the TRIG and ECHO terminals on the HC-
SR04 together in a process to estimate distance.

HC-SR04 distance measurement process

In this section, we will cover the process used to measure distance with the
HC-SR04. Don't get concerned if this does not make immediately sense. I've
provided the details here as background material, as this is the logical



process that is implemented by our example program to make the sensor
work. You will also find the process documented in the sensor's datasheet.

We measure distance with the HC-SR04 through the correct use and
monitoring of the TRIG and ECHO pins. The process looks like this:

1. Pull the TRIG pin HIGH for 10 microseconds. Pulling TRIG HIGH also
makes the ECHO pin HIGH.

2. Start a timer.
3. Wait for either of the following to happen:

ECHO to go LOW
38 milliseconds to elapse (from the datasheet, this is the time for
>4 meters)

4. Stop the timer.

If 38 milliseconds have passed, we conclude that there is no object in front
of the sensor (at least within the effective range of 2 centimeters to 4
meters). Otherwise, we take the elapsed time divided by 2 (because we want
the time interval between the sensor and the object, not the sensor to the
object and back to the sensor), and then using basic physics, calculate the
distance between the sensor and the object using the following formula:

Here, we have the following:

d is the distance in meters.
v is the velocity in meters per second, for which we use the speed of
sound, which is approximately 343 meters per second at 20°C (68°F).
t is the time in seconds.

The HC-SR04 will only estimate distance. There are several parameters that influence its
accuracy. Firstly, as hinted previously, the speed of sound varies in accordance with
temperature. Secondly, the sensor has a resolution of ± 0.3 cm. Furthermore, the size of
the object being measured, the angle of the object relative to the sensor, and even the
material it is made of can all impact the ECHO timing result and thus the calculated
distance.



With this basic understanding of how to use the HC-SR04 to estimate
distance, let's build our circuit to connect an HC-SR04 to our Raspberry Pi.

Building the HC-SR04 circuit

It's time to build our HC-SR04 circuit. A schematic of our circuit is shown in
the following figure. This wiring will be suitable for both an HC-SR04 or
HC-SR04P module:

Figure 11.6 – HC-SR04 (5-volt logic ECHO pin) circuit 

As a reminder, the HC-SR04 module (or an HC-SR04P wired like this to a
5-volt source) is a 5-volt logic module, and hence you will notice the voltage
divider in the circuit created by the two resistors to convert 5 volts into 3.3
volts. If you need a refresher on voltage dividers, we covered them in detail
in Chapter 6, Electronics 101 for the Software Engineer. 

Let's build this circuit on our breadboard:





Figure 11.7 – HC-SR04 circuit breadboard layout (part 1 of 2)

Here are the steps to follow to create the first part of your breadboard build.
The step numbers match the numbers in black circles in Figure 11.7:

1. Place a 1kΩ resistor (R1) into your breadboard.
2. Place a 2kΩ resistor (R2) into your breadboard. A leg of this second

resistor shares the same row as a leg of the first resistor. In the
illustration, this can be seen in row 21 on the right-hand side bank.

3. Connect the left-hand side and right-hand side negative power rails
together.

4. Connect a GND pin on your Raspberry Pi to the negative rail of the
left-hand side power rail.

5. Connect the second leg 2kΩ resistor (R2) to the negative rail of the
right-hand side power rail.

6. Connect the GND terminal on your HC-SR04 sensor to the negative rail
of the right-hand side power rail.

7. Connect the Vcc terminal on your HC-SR04 sensor to the positive rail
of the right-hand side power rail.

Make sure the R1 and R2 resistors are connected as shown in the preceding figure – that
is, R1 (1kΩ) is connected to the ECHO pin on the HC-SR04. The voltage divider created
by R1 and R2 shifts an ECHO pin HIGH of 5 volts into ~3.3 volts. If you installed the
resistors back to front, the 5 volts get shifted to ~1.67 volts, which is not enough to
register a logic HIGH on your Raspberry Pi.

Now that we have laid out our basic components and performed a few
preliminary wiring connections, let's complete our build:





Figure 11.8 – HC-SR04 circuit breadboard layout (part 2 of 2)

Here are the steps to follow. The step numbers match the numbers in black
circles in Figure 11.8:

1. Connect GPIO 20 on your Raspberry Pi to the Trig terminal on your
HC-SR04 sensor.

2. Connect GPIO 21 on your Raspberry Pi to the junction of the 1kΩ (R1)
and 2kΩ (R2) resistors. This connection is shown in the illustration at
hole F21.

3. Connect the Echo terminal of your HC-SR04 sensor to the 1kΩ resistor
(R1). This connection is shown at hole J17.

4. Connect the positive terminal of a 5-volt power source to the positive
rail of the right-hand side power rail.

5. Connect the negative terminal of a 5-volt power source to the negative
rail of the right-hand side power rail.

As mentioned, our circuit build will work with both the HC-SR04 and HC-
SR04P modules. If you do have the HC-SR04P module, there is a simpler
wiring option available to you that you may like to try on your own. Since
the HC-SR04P will work at 3.3 volts, here is what you can do:

Connect Vcc to a 3.3-volt power source or a 3.3-volt pin on your
Raspberry Pi.
Connect the ECHO terminal directly to GPIO 21.
GND still connects to GND, and TRIG still connects directly to GPIO
20.

Since this configuration is powered at 3.3 volts, the logic output on the
ECHO terminal is also 3.3 volts and is therefore safe to connect directly to a
Raspberry Pi GPIO pin.

Great! Now that our circuit is complete, next we will run our example
program and use the HC-SR04 to measure distance and learn about the code
that makes this happen.



Running and exploring the HC-SR04 example
code

The example code for the HC-SR04 can be found in the chapter11/hc-
sr04.py file. Please review the source code before proceeding to get a broad
understanding of what this file contains.

Place a solid object in front of the HC-SR04 (about 10 cm) and run the code
in a terminal. As you move the object nearer or further from the sensor, the
distance printed in the terminal will change, as indicated here:

(venv) python hc-sr04.py

Press Control + C to Exit

9.6898cm, 3.8149"

9.7755cm, 3.8486"

10.3342cm, 4.0686"

11.5532cm, 4.5485"

12.3422cm, 4.8591"

...

Let's review the code.

Firstly, we define the TRIG_GPIO and ECHO_GPIO pins on line 1, and the VELOCITY
constant for the speed of sound at line 2. We're using 343 meters per second.

Our code is using 343 m/s for the speed of sound, while the datasheet suggests the value
340 m/s. You will also find other HC-SR04 examples and libraries that use slightly
different values. These differences are one reason why different code samples and
libraries may produce slightly different readings for the same sensor-to-object distance.

On line 3, we define TIMEOUT_SECS = 0.1. The value of 0.1 is a number greater
than 38 milliseconds (from the datasheet). Any time greater than this and we
conclude that there is no object in front of our HC-SR04 sensor and return
the SENSOR_TIMEOUT value, rather than a distance in the get_distance_cms()
function, which we will come to shortly:

TRIG_GPIO = 20                                       # (1)

ECHO_GPIO = 21

# Speed of Sound in meters per second

# at 20 degrees C (68 degrees F)

VELOCITY = 343                                       # (2)

# Sensor timeout and return value



TIMEOUT_SECS = 0.1 # based on max distance of 4m     # (3)

SENSOR_TIMEOUT  = -1

Next, starting on line 4, we find several variables used to help measure the
timing of the sensor's ultrasonic pulse and if we have a successful reading:

# For timing our ultrasonic pulse

echo_callback = None                             # (4)

tick_start = -1

tick_end = -1

reading_success = False

echo_callback will contain a GPIO callback reference for later clean-up
purposes, while tick_start and tick_end hold the start and end timings used to
calculate the elapsed time for an ultrasonic pulse-echo. The term tick is used
to be consistent with PiGPIO timing functions, which we will come to
shortly. reading_success is True only when we have a distance reading
before TIMEOUT_SECS elapses.

We use the trigger() function shown on line 5 to start our distance
measurement. We simply apply the process set out in the datasheet on line 6
– that is, we make the TRIG pin HIGH for 10 μs:

def trigger():                                   # (5)

    global reading_success

    reading_success = False

    # Start ultrasonic pulses

    pi.write(TRIG_GPIO, pigpio.HIGH)             # (6)

    sleep(1 / 1000000) # Pause 10 microseconds

    pi.write(TRIG_GPIO, pigpio.LOW)

The get_distance_cms() function shown at line 7 is our primary function that
kicks off the distance measurement process by making a call to trigger(),
before waiting from line 8 until we have either a successful reading (that
is, reading_success = True) or TIMEOUT_SECS elapses, in which case, we return
SENSOR_TIMEOUT. While we are waiting, a callback handler named echo_handler()
is monitoring the ECHO_GPIO pin in the background for a successful read. We
will discuss echo_handler() later in this section:

def get_distance_cms()                           # (7)

    trigger()

    timeout = time() + TIMEOUT_SECS              # (8)

    while not reading_success:

      if time() > timeout:



          return SENSOR_TIMEOUT

      sleep(0.01)

When we have a successful reading, our function continues. On line 9, we
take the tick_start and tick_end variables (which will now have values set by
the echo callback handler) and calculate the elapsed time. Remember, we're
dividing the elapsed time at line 9 by 2 because we want the timing from the
sensor to the object, not the complete ultrasonic pulse round trip from the
sensor to the object, back to the sensor:

# ... get_distance_cms() continued

    # Elapsed time in microseconds.

    #Divide by 2 to get time from sensor to object.

    elapsed_microseconds = 

                pigpio.tickDiff(tick_start, tick_end) / 2   # (9)

    # Convert to seconds

    elapsed_seconds = elapsed_microseconds / 1000000

    # Calculate distance in meters (d = v * t)

    distance_in_meters = elapsed_seconds * VELOCITY         # (10)

    distance_in_centimeters = distance_in_meters * 100

    return distance_in_centimeters

It is on line 10 where we apply the formula, d = v × t, which we discussed
previously, to work out the distance between the sensor and an object.

Next, we encounter the echo_handler() function on line 11, which monitors the
ECHO_GPIO pin for changes in state:

def echo_handler(gpio, level, tick):            # (11)

    global tick_start, tick_end, reading_success

    if level == pigpio.HIGH:

        tick_start = tick                       # (12)

    elif level == pigpio.LOW:

        tick_end = tick                         # (13)

        reading_success = True

Applying the process set out in the datasheet, we are capturing the time
between sending a pulse at line 12 when ECHO_GPIO goes HIGH and receiving it
back on line 13 when ECHO_GPIO goes LOW. If we have detected ECHO_GPIO as LOW
before the timeout (back on line 8), we set reading_success = True so
that get_distance_cms() knows we have a valid reading.



Finally, we register the echo_handler() callback with PiGPIO on line 14. The
pigpio.EITHER_EDGE parameter means we want this callback to be called
whenever ECHO_GPIO transitions to either a HIGH or LOW state:

echo_callback = 

    pi.callback(ECHO_GPIO, pigpio.EITHER_EDGE, echo_handler) # (14)

Well done! You've just wired up, tested, and learned how to use the HC-
SR04 sensor together with PiGPIO to estimate distances. The circuit and
code examples you have just learned could be adapted and used to measure
water tank levels, or even as collision detection for a robot (a very common
application of an HC-SR04 in amateur robotics), or in any other project you
dream up where distance plays a part.

Next, we will briefly explore Hall-effect sensors and learn how they can be
used to detect movement and relative distances.

Detecting movement and distance
with Hall-effect sensors
Our final practical example in this chapter will illustrate the use of a Hall-
effect sensor. Hall-effect sensors are simple components that detect the
presence (or absence) of a magnetic field. In contrast to a PIR or distance
sensor, you can use a Hall-effect sensor together with a magnet to monitor
small-range – and even very rapid – movements. For example, you could
attach a small magnet to the shaft of a DC motor and use a Hall-effect sensor
to determine the motor's revolutions per minute.

Another common application of a Hall-effect sensor is in mobile phones and
tablets. Some phone and tables covers and cases have a small magnet in
them. As you open or close the case, your device detects the presence or
absence of this magnet with a Hall-effect sensor and automatically turns on
or off the display for you.

Hall-effect sensors come in three types, described as follows:



Non-latching switch types (digital): They output a digital state (that
is, HIGH or LOW) in the presence of magnetism and the opposite digital
state in its absence. Whether the signal is HIGH or LOW in the presence of
magnetism all depends on the sensor and whether it's active LOW or
active HIGH (please refer to Chapter 6, Electronics 101 for the Software
Engineer, if you need a refresher on the concepts of active LOW and
active HIGH).
Latching switch types (digital): They output (and latch to) LOW (or HIGH)
when one pole (for example, south) of a magnet is detected, and return
to HIGH (or LOW) (unlatch) when the alternative pole (for example, north)
is detected.
Ratiometric types (analog): They output a varying voltage depending
on how close they are to a magnetic field.

Some readers may be familiar with a component called a reed switch, which is a
magnetically controlled switch. At a glance, they seem similar in basic principle and
operation to a non-latching Hall-effect sensor. Here are the important differences –
unlike a classic reed switch, Hall-effect sensors are a solid-state device (no moving
parts), they can be switched/triggered very, very rapidly (thousands of times a second),
and they require an appropriate circuit to make them work.

Our examples will use the A3144 (non-latching digital switch) and
AH3503 (analog ratiometric) Hall-effect sensors. These specific parts have
been chosen due to their availability and low cost; however, the general
principles we will discuss will also be applicable to other Hall-effect
sensors. 

A picture of an A3144 Hall-effect sensor and common schematic symbols
are shown in the following figure:



Figure 11.9 – Hall-effect sensor and symbols

You will notice that the far-right symbol has four protruding outputs because
some Hall-effect sensors do have four legs. You can expect the outputs of
this symbol to be annotated in a schematic diagram appropriate for the
sensor it refers to. We will be sticking to the three-legged type sensor and the
corresponding three outputs symbol.

The legs of our components are as follows:

Vcc: 5-volt source power.
GND: Ground connection.
Out: 5-volt signal output. Note that the A3144 is active LOW, meaning
that in the presence of a magnetic field, the Out leg becomes LOW.

The Out leg will behave differently depending on the type of Hall-effect
sensor:

Latching and non-latching switching types: The Out leg will output
either digital LOW or a digital HIGH.
Ratiometric type: The output will be a varying voltage (that is,
an analog output). Note that the range of varying voltage will not be the
full range between 0 to 5 volts, but more likely a range of only a few
hundredths of a volt.

Now that we understand the leg configurations of a Hall-effect sensor, let's
build our circuit.



Creating a Hall-effect sensor circuit

We will be building the following circuit on our breadboards. Similar to our
HC-SR04 example and circuit in Figure 11.5, we need to use a voltage
divider since our Hall-effect sensor outputs 5-volt logic, which we need to
shift down to 3.3 volts:

Figure 11.10 – Hall-effect sensor circuit

You will notice that the output of this circuit is dualistic and will depend on
which sensor you are using:

For a non-latching switch or latching switch type Hall-effect sensor,
you will connect the circuit directly to GPIO 21 since the sensor will
output a digital HIGH/LOW signal.
For a ratiometric type Hall-effect sensor, you will need to connect the
sensor to your Raspberry Pi via your ADS1115 analog-to-digital
converter since the sensor outputs a varying analog voltage.

I have not included the ADS1115 wiring in Figure 11.9 or in the following stepped
breadboard layouts. We have already seen how to connect an analog output to our
Raspberry Pi using the ADS1115 in previous chapters – refer to Chapter 5, Connecting
Your Raspberry Pi to the Physical World, and/or Chapter 9, Measuring Temperature,
Humidity, and Light Levels, for example circuits and code using the ADS1115.



Let's construct this circuit on our breadboard. This layout is for a switching-
type Hall-effect sensor:

Figure 11.11 – Hall-effect sensor circuit breadboard layout

Here are the steps to follow to complete your breadboard build. The step
numbers match the numbers in black circles in Figure 11.10:

1. Place your A3144 Hall-effect sensor into your breadboard, paying
careful attention to its orientation regarding its legs. Please refer



to Figure 11.8 if you need help identifying the component's legs.
2. Place a 1kΩ resistor (R1) into your breadboard.
3. Place a 2kΩ resistor (R2) into your breadboard. A leg of this second

resistor shares the same row as a leg of the first resistor. In the
illustration, this can be seen in row 17 on the left-hand side bank.

4. Connect a 5-volt pin from your Raspberry Pi to the positive rail of the
left-hand side power rail.

5. Connect a GND pin from your Raspberry Pi to the negative rail of the
left-hand side power rail.

6. Connect the Hall-effect sensor's Vcc leg to the positive power rail.
7. Connect the Hall-effect sensor's GND leg to the negative power rail.
8. Connect the Hall-effect sensor's Out leg to the 1kΩ resistor (R1). In the

illustration, this is shown at hole E13.
9. Connect the junction of the 1kΩ (R1) and 2kΩ (R2) resistors to GPIO

21 on your Raspberry Pi.
10. Connect the left of the 2kΩ resistor (R2) to the negative power rail.

To use the AH3503 ratiometric type Hall-effect sensor at step 1 in this circuit, the wire at
step 9 will instead need to be connected to an input port (for example, A0) of an
ADS1115 module.

Now that we have built our Hall-effect sensor circuit, get a magnet ready, as
we're ready to run our example code and see how a magnet triggers the
sensor.

Running and exploring the Hall-effect sensor code

You will find the code for Hall-effect sensors in the
chapter11/hall_effect_digital.py file for switch and latching switch type Hall-
effect sensors and the chapter11/hall_effect_analog.py file for ratiometric type
Hall-effect sensors.

What you will find when you review these two files is the following:

chapter11/hall_effect_digital.py is functionally identical to the PIR code
example we covered previously in this chapter in the section
titled Running and exploring the PIR sensor code. Both the PIR and



non-latching/latching Hall-effect sensors are digital switches. The only
difference is that our reference Hall-effect sensor is active LOW.
chapter11/hall_effect_analog.py is similar to other analog-to-digital
examples we have seen using the ADS1115 ACD, including the circuit
wiring and code from Chapter 5, Connecting Your Raspberry Pi to the
Physical World.

The varying voltage range outputted by the AH3503 ratiometic Hall-effect sensor and
measured by your ADC via the voltage divider is likely to be in the range of a few
hundred millivolts.

As you run the example code, move a magnet past your Hall-effect sensor.
The magnet will need to be close to the casing of the sensor; however, it will
not need to physically touch the sensor. How close will all depend on the
strength of your magnet. 

If you cannot get your circuit and code to work, try rotating your magnet to reverse the
north/south pole that passes past the sensor. Also note that for a latching type Hall-effect
sensor, it is common for one pole of the magnet to latch (trigger) the sensor, while the
opposite pole will unlatch (un-trigger) the sensor.

Due to the code similarities, we won't cover the code again here. However, I
would like to say that at this point in the book, you now have both the digital
and analog base circuits and code available for you to connect up and use
any simple analog or digital component. As noted already in this chapter,
just be wary of the voltages and currents needed to power the component,
and especially what the output voltage is, because if it is more than 3.3 volts,
you will need to use a voltage divider or level-shifter. 

Summary
In this chapter, we looked at ways to detect movement and estimate distance
with our Raspberry Pi. We learned how to use a PIR sensor to detect broad
movements, and how a switch-type Hall-effect sensor can be used to detect
the movement of a magnetic field. We also discovered how to use an
ultrasonic range sensor to estimate absolute distance on a larger scale, and
how to use a ratiometric-type Hall-effect sensor to measure relative distances
on a small scale.



All our circuits and examples in this chapter have been input focused –
 telling our Raspberry Pi that some event has occurred, such as the detection
of a person moving or that a distance is being measured.

You are in a great position now to combine input circuits such as those
covered in this chapter (and also in Chapter 9, Measuring Temperature,
Humidity, and Light Levels), with output-based circuits and examples from C
hapter 7, Turning Things On and Off, Chapter 8, Lights, Indicators, and
Displaying Information, and Chapter 10, Movement with Servos, Motors, and
Steppers, to create end-to-end projects that can both control and measure the
environment!

Don't forget about what we learned in Chapter 2, Getting Started with Python
and IoT, Chapter 3, Networking with RESTful APIs and Web Sockets Using
Flask, and Chapter 4, Networking with MQTT, Python, and the Mosquitto
MQTT Broker. These three chapters provide you with the foundations for
creating web interfaces and integration to external systems that can control
and monitor the environment.

Many of the electronic and code examples presented so far in this book have
evolved around a single sensor or actuator. In the next chapter, we will
explore several Python-based design patterns that are useful when building
more complex automation and IoT projects that involve multiple sensors
and/or actuators that need to communicate with one another.

Questions
As we conclude, here is a list of questions for you to test your knowledge of
this chapter's material. You will find the answers in the Assessments section
of the book:

1. Can a PIR sensor detect the direction that an object is moving?
2. What are some factors that can affect the measurement accuracy of an

ultrasonic distance sensor?
3. How does the output of a latching or non-latching Hall-effect sensor

differ from the output of a ratiometric Hall-effect sensor?



4. In relation to this PiGPIO function call, callback = pi.callback(GPIO,
pigpio.EITHER_EDGE, callback_handler), what does the
pigpio.EITHER_EDGE parameter mean?

5. In a 5-volt to 3.3-volt resistor-based voltage divider consisting of a
1k Ω and 2k Ω resistor, why is important to connect the two resistor
values the correct way around in a circuit?

6. Both the HC-SR04 ultrasonic distance sensor and the HC-SR501 PIR
sensor were powered using 5 volts connected to their respective Vcc
pins. Why did we use a voltage divider with the HC-SR04 to drop the
output from 5 volts to 3.3 volts, but not with the HC-SR501?



Advanced IoT Programming
Concepts - Threads, AsyncIO, and

Event Loops
In the previous chapter, we learned how to detect movement with a PIR
sensor, as well as measure distances and detect movement with ultrasonic
sensors and Hall-effect sensors.

In this chapter, we will discuss alternative ways of structuring our Python
programs when we are working with electronic sensors (input devices) and
actuators (output devices). We will cover the classic event-loop approach to
programming, before moving on to more advanced approaches, including
the use of threads in Python, the publisher/subscriber model, and finally,
asynchronous I/O programming with Python.

I guarantee you that there are many, many blog posts and tutorials across the
internet covering these topics; however, what we will cover in this chapter
will be uniquely focused on practical electronic interfacing. Our approach in
this chapter will involve creating a simple circuit with a push-button, a
potentiometer, and two LEDs that we will make flash at different rates,
and presenting four different coding approaches to make the circuit work.

Here is what we will cover in this chapter:

Building and testing our circuit
Exploring an event-loop approach
Exploring a threaded approach
Exploring a publisher-subscriber alternative
Exploring an AsyncIO approach

Technical requirements
To perform the exercises in this chapter, you will need the following:



Raspberry Pi 4 Model B
Raspbian OS Buster (with desktop and recommended software)
Minimum Python version 3.5

These requirements are what the code examples in this book are based on.
It's reasonable to expect that the code examples should work without
modification on Raspberry Pi 3 Model B or a different version of Raspbian
OS as long as your Python version is 3.5 or higher.

You will find this chapter's source code in the chapter12 folder in the GitHub
repository available at https://github.com/PacktPublishing/Practical-Python-Programm
ing-for-IoT.

You will need to execute the following commands in a terminal to set up a
virtual environment and install the Python libraries required for the code in
this chapter:

$ cd chapter12              # Change into this chapter's folder

$ python3 -m venv venv      # Create Python Virtual Environment

$ source venv/bin/activate  # Activate Python Virtual Environment

(venv) $ pip install pip --upgrade        # Upgrade pip

(venv) $ pip install -r requirements.txt  # Install dependent packages

The following dependencies are installed from requirements.txt:

PiGPIO: The PiGPIO GPIO library (https://pypi.org/project/pigpio)
ADS1X15: The ADS1x15 ADC library (https://pypi.org/project/adafruit-
circuitpython-ads1x15)
PyPubSub: In-process messaging and events (https://pypi.org/project/PyP
ubSub)

The electronic components we will need for this chapter's exercises are as
follows:

2 x red LEDs
2 x 200 Ω resistors
1 x push-button switch
1 x ADS1115 module
1 x 10k Ω potentiometer

https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://pypi.org/project/pigpio
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/PyPubSub


To maximize your learning in this chapter, there are some assumptions made
regarding pre-existing knowledge and experience:

From an electronic interfacing perspective, I will assume that you have
read the preceding 11 chapters of this book and are comfortable
working with the PiGPIO and ADS1115 Python libraries featured
throughout this book.
From a programming perspective, I am assuming existing knowledge of
Object-Oriented Programming (OOP) techniques and how they are
implemented in Python.
Familiarity with the concepts event-loop, threads, publisher-
subscriber, and synchronous versus asynchronous paradigms will also
be advantageous.

If any of the preceding topics are unfamiliar, you will find many online
tutorials available covering these topics in great detail. Please see the
Further reading section at the end of the chapter for suggestions.

Building and testing our circuit
I'm going to present the circuit and programs for this chapter in the form of a
practical exercise. Let's pretend for a moment that we have been asked to
design and build a gizmo that has the following requirements:

It has two LEDs that blink.
A potentiometer is used to adjust the rate that the LED(s) blink.
When the program starts, both LEDs will blink at the same
rate determined by the position of the potentiometer.
A blinking rate of 0 seconds means an LED is off, while the maximum
blinking rate of 5 seconds means an LED is on for 5 seconds, then off
for 5 seconds, before repeating the cycle.
A push-button is used to select which LED changes its blinking rate
when the potentiometer is adjusted.
When the push-button is pressed and held for 0.5 seconds, all LEDs
synchronize to the same rate, determined by the potentiometer's
position.



Ideally, the program code should easily scale to support more LEDs
with minimal coding effort.

Here is a scenario illustrating the gizmo's use:

1. After applying power (and the program starts), all LEDs start to blink at
a rate of 2.5 seconds because the potentiometer's dial is at the midpoint
(50%) of its rotation.

2. The user adjusts the potentiometer to make the first LED blink at a rate
of 4 seconds.

3. Next, the user briefly presses and releases the push-button so that the
potentiometer will change the second LED's blinking rate.

4. Now, the user adjusts the potentiometer so that the second LED blinks
at a rate of 0.5 seconds.

5. Finally, the user presses and holds the button down for 0.5 seconds to
make both the first and second LED blink in unison at a rate of 0.5
seconds (the rate set by the potentiometer at step 4).

Now for the challenge I mentioned – before we get into this chapter's circuit
and code, I challenge you to stop reading now and try to create a circuit and
write a program that implements the preceding requirements.

You will find a short video demonstrating these requirements at https://youtu.be/seKkF61OE8U.

I anticipate that you will encounter challenges and have questions about the
best approach to take. There is no one best approach; however, by having
your own implementation – whether it works or not – you will have
something to compare and contrast with the four solutions that I will present
during this chapter. I'm confident that if you have a go yourself first, then
you will gain a deeper understanding and more insight. Hey, perhaps you'll
create an even better solution!

If you need suggestions to help get you started, here they are:

We first covered LEDs and push-buttons in Chapter 2, Getting Started
with Python and IoT.

https://youtu.be/seKkF61OE8U


We first covered potentiometers and analog input using an ADS1115
module in Chapter 5, Connecting Your Raspberry Pi to the Physical
World.

When you are ready, we will look at a circuit that fulfills the aforementioned
requirements.

Building the reference circuit

In Figure 12.1 is a circuit that meets the requirements we just listed. It has a
push-button, a potentiometer in the form of a voltage divider connected to an
ADS1115 analog-to-digital converter, and two LEDs connected by current
limiting resistors. Adding additional LEDs will be as simple as wiring more
LED and resistors pairs between GND and a free GPIO pin:

Figure 12.1 – Reference circuit schematic

If you have not already created a similar circuit on your own, we will create
this circuit now on your breadboard. We will build this circuit in three parts.
Let's get started:



Figure 12.2 – Reference circuit (part 1 of 3)

Here are the steps to follow to create the first part of our breadboard build
where we place the components. The step numbers match the numbers in
black circles in Figure 12.2:

1. Place the ADS1115 module into your breadboard.
2. Place the potentiometer into your breadboard.
3. Place an LED into your breadboard, taking care to orientate the LED's

legs as illustrated.
4. Place a second LED into your breadboard, taking care to orientate the

LED's legs as illustrated.
5. Place a 200Ω resistor (R1) into your breadboard. One end of this

resistor shares the same row as the anode leg of the LED placed in step
3.

6. Place another 200Ω resistor (R2) into your breadboard. One end of this
resistor shares the same row as the anode leg of the second LED you
placed in step 5.

7. Place the push-button into your breadboard.



Now that we have placed the components into the breadboard, let's start
wiring them:

Figure 12.3 – Reference circuit (part 2 of 3)

Here are the steps to follow to continue with the second part of our
breadboard build. The step numbers match the numbers in black circles
in Figure 12.3:

1. Connect a 3.3-volt pin from your Raspberry Pi to the positive rail of the
left-hand side power rail.

2. Connect the Vdd terminal of the ADS1115 to the positive rail of the
left-hand side power rail.



3. Connect the GND terminal of the ADS1115 to the negative rail of the
left-hand side power rail.

4. Connect the SCL terminal of the ADS1115 to the SCL pin on your
Raspberry Pi.

5. Connect the SDA terminal of the ADS1115 to the SDA pin on your
Raspberry Pi.

6. Connect a GND pin on your Raspberry Pi to the negative rail of the
left-hand side power rail.

7. Connect an outer terminal of the potentiometer to the positive rail of the
left-hand side power rail.

8. Connect another outer terminal of the potentiometer to the negative rail
of the left-hand side power rail.

9. Connect the center terminal of the potentiometer to port A0 of the
ADS1115.

Can you recall that the potentiometer in this configuration is creating a
variable voltage divider? If not, you may want to revisit Chapter 6, Electronics
101 for the Software Engineer. Furthermore, if you would like a detailed
refresher on the ADS1115 module, please refer to Chapter 5, Connecting your
Raspberry Pi to the Physical World.

Let's continue with our build:



Figure 12.4 – Reference circuit (part 3 of 3)

Here are the steps to follow to continue with the final part of our breadboard
build. The step numbers match the numbers in black circles in Figure 12.4:

1. Connect GPIO 26 from your Raspberry Pi to the 200 Ω resistor (R1).
2. Connect GPIO 19 from your Raspberry Pi to the second 200 Ω resistor

(R2).
3. Connect GPIO 21 from your Raspberry Pi to one leg of the push-

button.
4. Connect the two cathode legs of the LEDs together.



5. Connect the cathode legs of the LEDs to the negative rail of the left-
hand side power rail.

6. Connect the second leg of the push-button to the negative rail of the
left-hand side power rail.

Now that we have finished our circuit build, we are ready to run the sample
code to make the circuit work.

Running the examples

This chapter comes with four different versions of code that can work with
the circuit shown previously in Figure 12.1. You will find the code in the
chapter12 folder organized by version:

chapter12/version1_eventloop is an event-loop-based example.
chapter12/version2_thread is a thread and callback-based example.
chapter12/version3_pubsub is a publisher-subscriber-based example.
chapter12/version4_asyncio is an Asynchronous IO (AsyncIO)-based
example.

All versions are functionally equivalent; however, they differ in their code
structure and design. We will discuss each version in greater detail after we
test our circuit.

Here are the steps to follow to run each version (starting with version 1) and
test the circuit:

1. Change to the version1_eventloop folder.
2. Briefly look over the main.py source file, and any additional Python files

in the folder, to get a feel for what they contain and how the program is
structured.

3. Run main.py in a terminal (remember to switch into the chapter's virtual
environment first).

At this point, if you receive errors regarding I2C or ADS11x5, remember that there is
the i2cdetect tool, which can be used to confirm that an I2C device such as the ADS1115
is correctly connected and visible to your Raspberry Pi. Refer to Chapter 5, Connecting
Your Raspberry Pi to the Physical World, for more information.



4. Turn the potentiometer dial and observe the first LED's blinking rate
changes.

5. Press the button briefly.
6. Turn the potentiometer dial and observe the second LED's blinking rate

changes.
7. Press and hold the button for 0.5 seconds, and observe that both LEDs

now blink in unison at the same rate.

The following is an example of the terminal output you will receive:

(venv) $ cd version1_eventloop

(venv) $ python main.py

INFO:Main:Version 1 - Event Loop Example. Press Control + C To Exit.

INFO:Main:Setting rate for all LEDs to 2.5

INFO:Main:Turning the Potentiometer dial will change the rate for LED #0

INFO:Main:Changing LED #0 rate to 2.6

INFO:Main:Changing LED #0 rate to 2.7 

INFO:Main:Turning the Potentiometer dial will change the rate for LED #1

INFO:Main:Changing LED #1 rate to 2.6

INFO:Main:Changing LED #1 rate to 2.5

# Truncated

INFO:Main:Changing LED #1 rate to 0.5

INFO:Main:Changing rate for all LEDs to 0.5

8. Press Ctrl + C in your terminal to exit the program.
9. Repeat steps 1 through 8 for version2_threads, version3_pubsub, and

version4_asyncio.

You have just tested and glanced at the source code of four different
programs (perhaps five, if you challenged yourself to create your own) that
all achieve exactly the same end result but in different ways.

Now it's time to understand how these programs are built. Let's begin with
the event-loop version of the program.

Exploring the event-loop approach
We will start our code exploration by discussing an event-loop-based
approach to building the sample gizmo that we just tested in the previous
section.



The code for the event-loop-based approach can be found in the
chapter12/version1_eventloop folder. You will find one file named main.py. Please
take the time now to stop and read through the code contained in main.py to
get a basic understanding of how the program is structured and how it works.
Alternatively, you could add breakpoints or insert print() statements into the
code and run it again to understand how it works.

How did it go, and what did you notice? If you thought yuck or got lost in
the web of loops, if statements, and state variables, then well done! This
means you have invested the time to consider this approach and how the
code is constructed.

What I mean by an event-loop approach is demonstrated in the code by the
while True: loop abbreviated on line 1:

# chapter12/version1_eventloop

#

# Setup and initialization code goes before while loop.

#

if __name__ == "__main__":

    # Start of "Event Loop"

    while True:                                # (1)

      #

      # ... Main body of logic and code is within the while loop...

      #

      sleep(SLEEP_DELAY)

Granted, I could have used functions and even external classes to reduce the
quantity (and possibly enhance the readability) of the code within the while
loop, however, the overall design paradigm remains the same – the body of
the program control is sitting in a perpetual loop.

If you are familiar with Arduino programming, you will be intimately familiar with this
approach to programming. That's why I titled this section event-loop due to the
similarity of approach and the popularity of the term. Notwithstanding, note that the
term event-loop has a wider context within Python, as we will see when we look at the
AsyncIO (version 4) of our program.

You may have realized that this event-loop approach to programming has
been used by many of the examples throughout this book. Three examples
are as follows:



When we wanted a timed event such as blinking an LED (Chapter 2,
Getting Started with Python and IoT)
Polling the DHT 11 or DHT 22 temperature/humidity sensor (Chapter 9,
Measuring Temperature, Humidity, and Light Levels)
Polling the ADS1115 analog-to-digital converter connected to a Light-
Dependent-Resistor (LDR) (also Chapter 9, Measuring Temperature,
Humidity, and Light Levels)

In this context, for a single focused example, event-loops make sense. They
even make sense purely for convenience when you're hacking about and
trying out new ideas and learning about a new actuator or sensor. However,
as demonstrated by our version1_eventloop/main.py program, as soon as you add
in multiple components (such as a potentiometer, two LEDs, and a push-
button) and want to make them work together for a definite purpose, the
code gets complex fast.

For instance, consider the following code on line 3, which is responsible for
blinking all the LEDs, and remember that this block of code is evaluated
once per loop iteration and is responsible for blinking every LED:

    #

    # Blink the LEDs.

    #

    now = time()                                               # (3)

    for i in range(len(LED_GPIOS)):

        if led_rates[i] <= 0:

            pi.write(LED_GPIOS[i], pigpio.LOW) # LED Off.

        elif now >= led_toggle_at_time[i]:

            pi.write(LED_GPIOS[i], not pi.read(LED_GPIOS[i])) # Toggle LED

            led_toggle_at_time[i] = now + led_rates[i]

Compare this to a vanilla alternative (similar to what we will see in other
approaches), which at a moment's glance is significantly easier to
understand:

   while True:

      pi.write(led_gpio, not pi.read(led_gpio)) # Toggle LED GPIO High/Low

      sleep(delay)

If you also consider the following block of code, starting on line 2, which is
responsible for detecting button presses, then you find nearly 40 lines of
code (in the actual main.py file) just to detect what the button is doing:



while True:

    button_pressed = pi.read(BUTTON_GPIO) == pigpio.LOW        # (2)

    if button_pressed and not button_held:

        # Button has been pressed.

        # ... Truncated ...

    elif not button_pressed:

        if was_pressed and not button_held:

            # Button has been released

            # ... Truncated ...

    if button_hold_timer >= BUTTON_HOLD_SECS and not button_held:

        # Button has been held down

        # ... Truncated ...

    # ... Truncated ...

You will count multiple variables at play – button_pressed, button_held,
was_pressed, and button_hold_timer – that are all evaluated at every while loop
iteration and are there primarily to detect a button-hold event. I'm sure you
can appreciate that writing and debugging this code like this can be tedious
and error-prone.

We could have used a PiGPIO callback to handle button presses outside of the while loop,
or even a GPIO Zero Button class. Both approaches would help reduce the complexity of
the button-handling logic. Likewise, maybe we could have mixed in a GPIO Zero LED
class to handle the LED blinking. However, if we did, our example would not be a purely
event-loop-based example.

Now, I'm not saying that event-loops are a bad or wrong approach. They
have their uses, they are needed, and, in essence, we create one every time
we use a while loop or another looping construct – so the base ideal is
everywhere, but it's just not an ideal approach to building complex
programs, because this approach makes them harder to understand, maintain,
and debug.

Whenever you find that your program is heading down this event-loop path,
stop and reflect, because it might be time to consider refactoring your code
to employ a different – and more maintainable – approach, such as a
threaded/callback approach, which we will look at next.

Exploring a threaded approach



Now that we have explored an event-loop-based approach to creating our
program, let's consider an alternative approach built using threads, callbacks,
and OOP and see how this approach improves code readability and
maintainability and promotes code reuse.

The code for the threaded-based approach can be found in the
chapter12/version2_threads folder. You will find four files – the main program,
main.py, and three class definitions: LED.py, BUTTON.py, and POT.py.

Please take the time now to stop and read through the code contained
in main.py to get a basic understanding of how the program is structured and
how it works. Then, proceed to review LED.py, BUTTON.py, and POT.py.

How did it go, and what did you notice? I'd guess that you found this version
of the program (while reading through main.py) much quicker and easier to
understand and noticed that there is no cumbersome and complex while loop,
but instead a pause() call, which is necessary to stop our program from
exiting, as summarized on line 3:

# chapter12/version2_threads/main.py

if __name__ == "__main__":                                       # (3)

        # Initialize all LEDs

        # ... Truncated ...

        # No While loop!

        # It's our BUTTON, LED and POT classes and the 

        # registered callbacks doing all the work.

        pause()

In this program example, we have employed object-oriented techniques and
componentized our program using three classes:

A button class (BUTTON.py), which takes care of all the button logic
A potentiometer class (POT.py), which takes care of all the potentiometer
and analog-to-digital conversion logic
A LED class (LED.py), which is responsible for making a single LED
flash

By using an OOP approach, our main.py code is greatly simplified. Its role is
now to create and initialize class instances and house the callback handlers
and logic that make our program work.



Consider the following OOP approach for our push-button:

# chapter12/version2_threads/main.py

# Callback Handler when button is pressed, released or held down.

def button_handler(the_button, state):

    global led_index

    if state == BUTTON.PRESSED:                                 # (1)

        #... Truncated ...

    elif state == BUTTON.HOLD:                                  # (2)

        #... Truncated 

# Creating button Instance

button = BUTTON(gpio=BUTTON_GPIO,

               pi=pi,

               callback=button_handler)

Compared to the button-handing code from the event-loop example, this is
greatly simplified and much more readable – it's pretty explicit where and
how this code is responding to the button pressed at line 1 and button holds
on line 2.

Let's consider the BUTTON class, which is defined in the BUTTON.py file. This class
is an enhancing wrapper around a PiGPIO callback function that turns the
HIGH/LOW states of the button's GPIO pin into PRESSED, RELEASED, and HOLD events,
as summarized in the following code at line 1 in BUTTON.py:

# chapter12/version2_threads/BUTTON.py

def _callback_handler(self, gpio, level, tick): # PiGPIO Callback  # (1)

     if level == pigpio.LOW: # level is LOW -> Button is pressed

         if self.callback: self.callback(self, BUTTON.PRESSED)

         # While button is pressed start a timer to detect

         # if it remains pressed for self.hold_secs

         timer = 0                                                 # (2)

         while (timer < self.hold_secs) and not self.pi.read(self.gpio):

             sleep(0.01)

             timer += 0.01

         # Button is still pressed after self.hold_secs

         if not self.pi.read(self.gpio):                

             if self.callback: self.callback(self, BUTTON.HOLD)

     else: # level is HIGH -> Button released            

         if self.callback: self.callback(self, BUTTON.RELEASED)

Compared to the button-handling code of the event-loop example, we did not
introduce and interrogate multiple state variables to detect the button-hold
event, but instead, this logic is reduced to a simple and linear approach at
line 2.



Next, as we consider the POT class (defined in POT.py) and LED class (defined in
LED.py), we will see threads come into our program.

Did you know that even in a multi-threaded Python program, only one thread is active at
a time? While it seems counter-intuitive, it was a design decision known as the Global
Interpreter Lock (GIL) made back when the Python language was first created. If you
want to learn more about the GIL and the many other forms of achieving concurrency
with Python, you will find resources in the Further reading section of this chapter.

The following is the thread run method for the POT class, which can be found
in the POT.py source file, and illustrates, starting on line 1, the approach of
intermediately polling the ADS1115 ADC to determine the potentiometer's
position. We've seen this polling example several times already throughout
this book, starting back in Chapter 5, Connecting Your Raspberry Pi to the
Physical World, where we first discussed analog-to-digital conversion, the
ADS1115 module, and potentiometers:

    # chapter12/version2_threads/POT.py

    def run(self):   

        while self.is_polling:                              # (1)

            current_value = self.get_value()  

            if self.last_value != current_value:            # (2)

                if self.callback:

                    self.callback(self, current_value)      # (3)

                self.last_value = current_value

            timer = 0  

            while timer < self.poll_secs:  # Sleep for a while

                sleep(0.01)

                timer += 0.01

        

        # self.is_polling has become False and the Thread ends.

        self.__thread = None

The difference with our code here is that we are monitoring the ADC for
voltage changes on line 2 (for example, when a user turns the
potentiometer), and turning them into a callback on line 3, which you will
have seen handled in main.py when you reviewed the source code in that file.

Let's now discuss how we are implementing the version2 LED-related
code. As you are aware, the basic code pattern for blinking an LED on and
off at a defined rate involves a while loop and a sleep statement. This is the
approach taken in the LED class, as seen in the run() method on line 3 in
LED.py:



# chapter12/version2_threads/LED.py

 def run(self):                                                    # (3)

     """ Do the blinking (this is the run() method for our Thread) """

     while self.is_blinking:

         # Toggle LED On/Off

         self.pi.write(self.gpio, not self.pi.read(self.gpio))

         # Works, but LED responsiveness to rate chances can be sluggish.

         # sleep(self.blink_rate_secs)

         # Better approach - LED responds to changes in near real-time.

         timer = 0

         while timer < self.blink_rate_secs:

             sleep(0.01)

             timer += 0.01

 

     # self.is_blinking has become False and the Thread ends.

     self._thread = None

I am sure you will agree that this is easier to understand than the approach
taken by the event-loop approach we discussed in the previous section. It is
important to remember, however, that the event-loop approach was working
with and altering the blinking rate of all LEDs together in a single block of
code, and within a single thread – the program's main thread.

Notice the two sleep approaches shown in the preceding code. While the first approach
using sleep(self.blink_rate_secs) is common and tempting, the caveat is that it blocks the
thread for the full duration of the sleep. As a result, the LED will not respond to rate
changes immediately and will feel sluggish to a user when they turn the potentiometer.
The second approach, commended #Better approach, alleviates this issue and allows the
LED to respond to rate changes in (near) real time.

Our version2 program example using the LED class with its own internal
thread now means that we have multiple threads – one per LED – all making
the LEDs blink independently to one another.

Can you think of any potential problems this may introduce? Okay, it might
be obvious if you have read through the version2 source files – it's the
synchronization of all LEDs to blink at the same rate in unison when the
button is held for 0.5 seconds!

By introducing multiple threads, we have introduced multiple timers (that is,
the sleep() statement), so each thread is blinking on its own independent
schedule, and not from a common reference point in terms of a starting
timebase.



This means that if we simply called led.set_rate(n) on multiple LEDs, while
they would all blink on and off at the rate n, they would not necessarily blink
in unison.

A simple solution to this issue is to synchronize the turning off of all LEDs
before we start them blinking at the same rate. That is, we start them
blinking from a common state (that is, off), and start them blinking together.

This approach is shown in the following code snippet starting at line 1 in
LED.py. The core of the synchronization is achieved by the led._thread.join()
statements on line 2:

    # chapter12/version2_threads/LED.py

    @classmethod                                           # (1)

    def set_rate_all(cls, rate):

        for led in cls.instances: # Turn off all LEDs.

            led.set_rate(0)

        for led in cls.instances:                        

            if led._thread:

                led._thread.join()                         # (2)

        # We do not get to this point in code until all 

        # LED Threads are complete (and LEDS are all off)

        

        for led in cls.instances:  # Start LED's blinking

            led.set_rate(rate)

This is a good first pass at synchronization, and for practical purposes, it
works well for our situation. As mentioned, all we are doing is ensuring our
LEDs start blinking together from an off state at the same time (well, very,
very, very close to the same time, subject to the time taken for Python to
iterate through the for loops).

Try commenting out led._thread.join() and the embodying for loop on line 2 in the
preceding code and run the program. Make the LEDs blink at different rates, then try to
synchronize them by holding down the button. Does it always work?

However, it must be noted that we are still dealing with multiple threads and
independent timers to make our LEDs blink, so the potential for a time drift
to occur is present. If this ever presented a practical issue, we would then
need to explore alternative techniques to synchronize the time in each thread,
or we could create and use a single class to manage multiple LEDs together



(basically using the approach from the event-loop example, only refactoring
it into a class and a thread).

The takeaway here regarding threads is that when you introduce threads to
your applications, you can introduce timing issues that may be designed
around or synchronized.

If your first pass at a prototype or new program involves an event-loop-based approach
(as I often do), then as you refactor that code out into classes and threads, always think
about any timing and synchronizing issues that may arise. Discovering synchronization-
related bugs by accident during testing (or worse, when in production) is frustrating as
they can be hard to reliably replicate, and could result in the need for extensive rework.

We've just seen how to create our sample gizmo program using OOP
techniques, threads, and callbacks. We've seen how this approach results in
easier to read and maintain code, and we also discovered the additional
requirement and effort needed to synchronize threaded code. Next, we will
look at the third variation of our program, which is based around a publisher-
subscriber model.

Exploring the publisher-subscriber
alternative
Now that we have seen an approach to creating our program using threads,
callbacks, and OOP techniques, let's consider a third approach using a
publisher-subscriber model.

The code for the publisher-subscriber approach can be found in
the chapter12/version3_pubsub folder. You will find four files – the main
program, main.py, and three class definitions: LED.py, BUTTON.py, and POT.py.

Please take the time now to stop and read through the code contained
in main.py to get a basic understanding of how the program is structured and
how it works. Then, proceed to review LED.py, BUTTON.py, and POT.py.



What you will have noticed is that the overall program structure (especially
the class files) is very similar to the version2 thread/callback example that we
covered in the previous heading.

You may also have realized that this approach is very similar in concept to
the publisher/subscribing method employed by MQTT, which we discussed
in detail in Chapter 4, Networking with MQTT, Python, and the Mosquitto
MQTT Broker. The main difference is that in our current version3 example,
our publisher-subscribing context is confined just to our program run-time
environment, not a network-distributed set of programs, which was the
scenario for our MQTT examples.

I have implemented the publishing-subscribing layer in version3 using the
PyPubSub Python library, which is available from pypi.org and is installed using
pip. We will not discuss this library in any detail, as the overall concepts and
use of this type of library should already be familiar to you, and if not, I have
no doubt that you will immediately understand what's going on once you
review the version3 source code files (if you have not already done so).

There are alternative PubSub libraries available for Python through PyPi.org. The
choice to use PyPubSub for this example was due to the quality of its documentation and
the examples provided there. You will find a link to this library in the Technical
requirements section at the start of this chapter.

Due to the similarity of the version2 (threaded approach) and version3
(publisher-subscriber approach) examples, we will not discuss each code file
in detail, other than to point out that the core differences:

In version2 (threaded), this is how our led, button, and pot class instances
communicate with one another:

We registered callback handlers in main.py on the button and pot class
instances.
button and pot send events (for example, a button press or
potentiometer adjustment) via this callback mechanism.
We interacted with the LED class instances directly using
the set_rate() instance method and the set_rate_all() class method.

In version3 (publisher-subscriber), here is the intra-class communication
structure and design:

https://pypi.org/


Every class instance is very loosely coupled.
There are no callbacks.
We do not interact with any class instances directly after they are
created and registered with PyPubSub.
All communication between classes and threads occurs using the
messaging layer provided by PyPubSub.

Now, to be honest, our gizmo program does not benefit from a publisher-
subscriber approach. My personal preference is to adopt the callback version
for a small program like this one. However, I have provided the publisher-
subscriber alternative implementation as a point of reference so that you
have this alternative to consider for your own needs.

Where a publisher-subscriber approach shines is in more complex programs
where you have many components (and here I mean software components,
not necessarily electronics components) that need to share data and can do so
in an asynchronous PubSub-style nature.

We're presenting the coding and design approaches in this chapter in four very discrete
and focused examples. In practice, however, it's common to combine these approaches
(and other design patterns) in a hybrid and mixed fashion when creating your programs.
Remember, the approach or combination of approaches to use is whatever makes the
most sense for what you are trying to achieve.

As we have just discussed, and you will have seen as you reviewed the
version3 code, a publisher-subscriber approach to our gizmo program is a
simple variation of the thread and callback approach, where instead of using
callbacks and interacting with class instances directly, we standardize all
code communication to a messaging layer. Next, we will look at our final
approach to coding our gizmo program, this time taking the AsyncIO
approach.

Exploring an AsyncIO approach
So far in this chapter, we have seen three different programming approaches
to achieving the same end goal. Our fourth and final approach will be built
using the AsyncIO libraries offered by Python 3. As we will see, this



approach shares similarities and differences with our previous approaches,
and also adds an extra dimension to our code and how it operates.

Speaking from my own experience, this approach can feel complex,
cumbersome, and confusing the first time you experience asynchronous
programming in Python. Yes, there is a steep learning curve to
asynchronous programming (and we can only barely scratch the surface in
this section). However, as you learn to master the concepts and gain practical
experience, you may start to discover that it is an elegant and graceful way
to create programs!

If you are new to asynchronous programming in Python, you will find curated tutorial
links in the Further reading section to deepen your learning. It is my intention in this
section to give you a simple working AsyncIO program that focuses on electronic
interfacing, which you can use as a reference as you learn more about this style of
programming.

The code for the asynchronous-based approach can be found in the
chapter12/version4_asyncio folder. You will find four files – the main program,
main.py, and three class definitions: LED.py, BUTTON.py, and POT.py.

Please take the time now to stop and read through the code contained
in main.py to get a basic understanding of how the program is structured and
how it works. Then proceed to review LED.py, BUTTON.py, and POT.py.

If you are also a JavaScript developer – particularly Node.js – you will already know
that JavaScript is an asynchronous programming language; however, it looks and feels
very different from what you are seeing in Python! I can assure you that the principles
are the same. Here is a key reason why they feel very different – JavaScript
is asynchronous by default. As any experienced Node.js developer knows, we often have
to go to (often extreme) lengths in code to make parts of our code behave synchronously.
The opposite is true for Python – it's synchronous by default, and we need to extend
extra programming effort to make parts of our code behave asynchronously.

As you read through the source code files, I want you to think about our
version4 AsyncIO program as having elements of both the version1 event-loop-
based program and the version2 threaded/callback program. Here is a
summary of the key differences and similarities:

The overall program structure is very similar to the version2
thread/callback example.



At the end of main.py, we have a few new lines of code that we have not
seen in this book before – for example, loop = asyncio.get_event_loop().
Like the version2 program, we have used OOP techniques to factor our
components into classes, which also have a run() method – but notice
how there is no thread instance in these classes and no code related to
starting a thread.
In the class definition files, LED.py, BUTTON.py, and POT.py, we have the async
and await keywords sprinkled around and in the run() function, and a
delay of 0 seconds in the while loop – that is, asyncio.sleep(0) – so we're
not really sleeping at all!
In BUTTON.py, we are no longer using the PiGPIO callback to monitor a
button being pressed, but instead polling the button GPIO in a while
loop.

The Python 3 AsyncIO library has evolved significantly over time (and still is evolving),
with new API conventions, the addition of higher-level functionality. and deprecated
functions. Due to this evolution, code can get out of date with the latest API conventions
quickly, and two code examples illustrating the same underlying concepts can be using
seemingly different APIs. I highly recommend you glance through the latest Python
AsyncIO library API documentation as it will give you hints and examples of newer
versus older API practices, which may help you better interpret code examples.

I will explain how this program works by walking you through the high-
level program flow in a simplified way. When you can grasp the general idea
of what is happening, you are well on your way to understanding
asynchronous programming in Python.

You will also find a file named chapter12/version4_asyncio/main_py37.py. This is a Python
3.7+ version of our program. It uses an API available since Python 3.7. If you look
through this file, the differences are clearly commented.

At the end of the main.py file, we see the following code:

if __name__ == "__main__":

       # .... truncated ....

        # Get (create) an event loop.

        loop = asyncio.get_event_loop()      # (1)

        # Register the LEDs.

        for led in LEDS:

            loop.create_task(led.run())      # (2)

        # Register Button and Pot

        loop.create_task(pot.run())          # (3)

        loop.create_task(button.run())       # (4)



        # Start the event loop.

        loop.run_forever()                   # (5)

An asynchronous program in Python evolves around the event-loop. We see
this created at line 1 and started at line 5. We'll come back to the
registrations occurring in between at lines 2, 3, and 4 momentarily.

The overall principle of this asynchronous event-loop is similar to our
version1 event-loop example; however, the semantics are different. Both
versions are single-threaded, and both sets of code do go around in a loop.
In version1, this was very explicit because our main body of code was
contained in an outer while loop. In our asynchronous version4, it's more
implicit, and has a core difference – it's non-blocking if programmed
correctly, and as we will see soon, this is the purpose of the await
asyncio.sleep() calls in the class run() methods.

As mentioned, we have registered our class run() methods with the loop on
lines 2, 3, and 4. After we start the event-loop on line 5, here is what
happens in simplified terms:

1. The first LED's run() function (shown in the following code) is called:

# version4_asyncio/LED.py

async def run(self):

    """ Do the blinking """

    while True:                                           # (1)

        if self.toggle_at > 0 and 

              (time() >= self.toggle_at):                 # (2)

            self.pi.write(self.gpio, not self.pi.read(self.gpio))

            self.toggle_at += self.blink_rate_secs

        await asyncio.sleep(0)                            # (3)

2. It enters the while loop on line 1 and toggles the LED on or off from line
2, depending on the blinking rate.

3. Next, it gets to line 3, await asyncio.sleep(0), and yields control. At this
point, the run() method is effectively paused, and another while loop
iteration does not start.

4. Control is passed over the second LED's run() function, and it runs
through it's while loop once until it reaches await asyncio.sleep(0). It then
yields control.



5. Now, the pot instance's run() method (shown in the following code) gets
a turn to run:

async def run(self):

    """ Poll ADC for Voltage Changes """

    while True:

        # Check if the Potentiometer has been adjusted.

        current_value = self.get_value()

        if self.last_value != current_value:

            if self.callback:

                self.callback(self, current_value)

            self.last_value = current_value

        await asyncio.sleep(0)

6. The run() method performs one iteration of the while loop until it
reaches await asyncio.sleep(0). It then yields control.

7. Control is passed to the button instance's run() method (partly shown in
the following code), which has multiple await asyncio.sleep(0) statements:

async def run(self):

    while True:

        level = self.pi.read(self.gpio) # LOW(0) or HIGH(1)

        # Waiting for a GPIO level change.

        while level == self.__last_level:

            await asyncio.sleep(0)

            # ... truncated ...

            while (time() < hold_timeout_at) and \

                   not self.pi.read(self.gpio):

                await asyncio.sleep(0)

        # ... truncated ...

        await asyncio.sleep(0)

8. As soon as the button's run() method reaches any instance of await
asyncio.sleep(0), it yields control.

9. Now, all our registered run() methods have had a chance to run, so the
first LED's run() method will take control again and perform one while
loop iteration until it reaches await asyncio.sleep(0). Again, at this point it
yields control and the second LED's run() method gets another turn to
run...and the process continues over and over, with each run() method
getting a turn to run in a round-robin fashion.

Let's tie up a few loose ends where you will likely have questions:



What about the button's run() function with its many await
asyncio.sleep(0) statements?

When control is yielded at any await asyncio.sleep(0) statement, the
function yields at this point. The next time the run() button gets
control, the code will continue from the next statement beneath
the await asyncio.sleep(0) statement that yielded. 

Why is the sleep delay 0 seconds?

Awaiting a zero-delay sleep is the simplest way to yield control (and
please note that it is the sleep() function from the asyncio library, not
the sleep() function from the time library). However, you can await any
asynchronous method, but this is beyond the scope for our simple
example.

I have used zero-second delays for this example for simplicity in
explaining how the program works, but you can use non-zero delays.
All this means is that the yielding run() function would sleep for this
period – the event-loop will not give it a turn to run until this period
expires.

What about the async and await keywords – how do I know where to use
them?

This certainly comes with practice; however, here are the basic
design rules:

If you are registering a function (for example, run()) with the
event-loop, the function must start with the async keyword.
Any async function must contain at least one await statement.

Writing and learning asynchronous programs takes practice and
experimentation. One of the initial design challenges you will face is
knowing where to put await statements (and how many), and how long you
should yield control for. I encourage you to play with the version4 code base,
add in your own debugging print() or logging statements, and just
experiment and tinker until you get a feel for how it all fits together. At some



point, you'll have that aha moment, and at that point, you have just opened
the door to further explore the many advanced features offered by the Python
AsyncIO libraries.

Now that we have seen how an asynchronous program is structured and
behaves at runtime, I want to give you something to experiment with and
ponder.

An asynchronous experiment

Let's try an experiment. Maybe you've wondered how version4 (AsyncIO) is a
bit like our version1 (event-loop) code, only it's been refactored into classes
just like the version2 (threaded) code. So, couldn't we just refactor the code in
the version1 while loop into classes, create and call a function them (for
example, run()) in the while loop, and not bother with all the asynchronous
stuff and its extra library and syntax?

Let's try. You will find a version just like this in
the chapter12/version5_eventloop2 folder. Try running this version, and see what
happens. You'll find that the first LED blinks, the second one is always on,
and that the button and potentiometer do not work.

Can you work out why?

Here's the simple answer: in main.py, once the first LED's run() function is
called, we're stuck in its while loop forever!

The call to sleep() (from the time library) does not yield control; it just halts
the LED's run() method for the duration before the next while loop iteration
occurs.

Hence, this is an example of why we say synchronous programs are blocking
(no yielding of control), and why asynchronous programs are non-blocking
(they yield control and give other code a chance to run).

I hope you have enjoyed our exploration of four alternative ways of
structuring electronic-interfacing programs – and one way we shouldn't.



Let's conclude by recapping what we have learned in this chapter.

Summary
In this chapter, we looked at four different way of structuring a Python
program that interface with electronics. We learned about an event-loop
approach to programming, two variations on a thread-based approach –
callbacks and a publisher-subscriber model – and finished by looking at how
an AsyncIO approach to programming works.

Each of the four examples we covered was very discrete and specific in its
approach. While we briefly discussed the relative benefits and pitfalls of
each approach along the way, it's worth remembering that in practice, your
projects will likely use a mixture of these (and potentially other) approaches,
depending on the programming and interfacing goals you are trying to
achieve.

In the next chapter, we will turn our attention toward IoT platforms and
present a discussion of the various options and alternatives that are available
for building IoT programs.

Questions
As we conclude, here is a list of questions for you to test your knowledge of
this chapter's material. You will find the answers in the Assessments section
of the book:

1. When is a publisher-subscriber model a good design approach?
2. What is the Python GIL, and what implication does it present for classic

threading?
3. Why is a pure event-loop usually a poor choice for complex

applications?
4. Is an event-loop approach a bad idea? Why or why not?
5. What is the purpose of the thread.join() function call?



6. You have used a thread to poll your new analog component via an
analog-to-digital converter. However, you find that your code behaves
sluggishly to changes in the component. What could be the problem?

7. Which is the superior approach to designing an IoT or electronic
interfacing application in Python – using an event-loop, a
thread/callback, the publisher-subscriber model, or an AsyncIO-based
approach?

Further reading
The realpython.com website has a range of excellent tutorials covering all
things concurrency in Python, including the following:

What is the Python GIL? https://realpython.com/python-gil
Speed Up Your Python Program with Concurrency: https://realpython.co
m/python-concurrency

An Intro to Threading in Python: https://realpython.com/intro-to-python-thr
eading

Async IO in Python: A Complete Walkthrough: https://realpython.com/asy
nc-io-python

The following are relevant links from the official Python (3.7) API
documentation:

Threading: https://docs.python.org/3.7/library/threading.html
The AsyncIO library: https://docs.python.org/3.7/library/asyncio.htm
Developing with AsyncIO: https://docs.python.org/3.7/library/asyncio-dev.h
tml

Concurrency in Python: https://docs.python.org/3.7/library/concurrency.html

https://realpython.com/
https://realpython.com/python-gil
https://realpython.com/python-concurrency
https://realpython.com/intro-to-python-threading
https://realpython.com/async-io-python
https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/asyncio.htm
https://docs.python.org/3.7/library/asyncio-dev.html
https://docs.python.org/3.7/library/concurrency.html


IoT Visualization and Automation
Platforms

In the previous chapter, we looked at alternative approaches to structuring a
Python program that interfaces with electronics. This included an event loop
approach, two thread-based approaches showing the use of callbacks and a
publisher-subscriber model, and an asynchronous I/O approach.

In this chapter, we will be discussing IoT and automation platforms that you
can use with your Raspberry Pi. The terms IoT platform and automation
platform are very broad concepts, so for the purpose of this chapter, what I
mean by these terms is any software service – cloud-based or locally
installable – that provides you with a ready-made ecosystem to create
powerful, flexible, and fun IoT-based projects.

Our primary focus will be on the If-This-Then-That (IFTTT) automation
platform, which I suspect many of you will have some familiarity with, and
the ThingSpeak platform for data visualization. I have chosen these two
services because they both offer a free pricing tier and allow us to create and
explore simple demonstrations and examples that you can build upon.
However, besides these, I'll also discuss a few other IoT and automation
platforms that I have experience with that will allow you to build even more
powerful IoT solutions.

The following topics will be covered in this chapter:

Triggering an IFTTT Applet from your Raspberry Pi
Actioning your Raspberry Pi from an IFTTT Applet
Visualizing data with the ThingSpeak platform
Other IoT and automation platforms for further exploration

Let's get started!

Technical requirements



To perform the exercises in this chapter, you will need the following:

Raspberry Pi 4 Model B
Raspbian OS Buster (with a desktop and recommended software)
Python version 3.5 at a minimum

These requirements are what the code examples in this book are based on.
It's reasonable to expect that the code examples should work without
modification on a Raspberry Pi 3 Model B or a different version of Raspbian
OS, as long as your Python version is 3.5 or higher.

You will find this chapter's source code in the chapter13 folder in this book's
GitHub repository, which is available here: https://github.com/PacktPublishing/Pr
actical-Python-Programming-for-IoT.

You will need to execute the following commands in a Terminal to set up a
virtual environment and install the Python libraries required for the code in
this chapter:

$ cd chapter13              # Change into this chapter's folder

$ python3 -m venv venv      # Create Python Virtual Environment

$ source venv/bin/activate  # Activate Python Virtual Environment

(venv) $ pip install pip --upgrade        # Upgrade pip

(venv) $ pip install -r requirements.txt  # Install dependent packages

The following dependencies will be installed from requirements.txt:

PiGPIO: The PiGPIO GPIO library (https://pypi.org/project/pigpio)
The Paho MQTT library: https://pypi.org/project/paho-mqtt
The Requests HTTP library: https://pypi.org/project/requests
The PiGPIO-based DHT library: https://pypi.org/project/pigpio-dht

The electronic components we will need for this chapter's exercises are as
follows:

1 x DHT11 (lower accuracy) or a DHT22 (higher accuracy)
temperature and humidity sensor
1 x red LED
Resistors:

1 x 200Ω resistor

https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://pypi.org/project/pigpio
https://pypi.org/project/paho-mqtt
https://pypi.org/project/requests
https://pypi.org/project/pigpio-dht


1 x 10kΩ resistor (optional)

Triggering an IFTTT Applet from
your Raspberry Pi
Many of you may already be familiar with the If-This-Than-That (IFTTT)
web service (ifttt.com), where you can create simple workflow automation
chains called Applets. An Applet responds to changes in one web service
(the This), which then triggers an action on another web service (the That).

Here are some common examples of Applet configurations (called Recipes):

Send yourself an email whenever a particular Twitter hashtag is
published.
Turn a smart light bulb on or off at a certain time of the day.
Open your internet-connected garage door using your phone's GPS
when you are approaching your house.
Log how long you spend in the office in a spreadsheet.
...and thousands upon thousands of other examples!

As we will learn in this section and the next, our Raspberry Pi can assume
the role of both the This or the That, to either trigger an Applet or perform an
action in response to a triggered Applet.

The following is a visual representation of what we will cover in this
section; that is, making our Raspberry Pi assume the This role in an IFTTT
workflow:

https://ifttt.com/


Figure 13.1 – Raspberry Pi assuming the This role in an IFTTT Applet workflow

Our forthcoming Python example will monitor the current temperature (the
This), and at a specific temperature will request a special IFTTT
Webhook URL. This URL request triggers our Applet, which then sends out
an email (the That). We will discuss Webhooks in greater detail shortly when
we build our first IFTTT Applet.

First, we need to create and test our example circuit, which we will do next.

Creating the temperature monitoring circuit

For this example, we will be reusing the DHT11/DHT22 temperature circuit
we created in Chapter 9, Measuring Temperature, Humidity, and Light Levels.

Here is what we need to do:

1. Build the circuit illustrated in Figure 9.2.
2. Connect the data pin to GPIO 24 (in Chapter 9, Measuring Temperature,

Humidity, and Light Levels, we used GPIO 21, but we will use GPIO 21
for a LED later in this chapter).

Once you have built your circuit, we can continue and build our first IFTTT
Applet.

Creating and configuring an IFTTT Applet



To create our IFTTT Applet, there are many steps that we need to follow.
Many of these steps are simple and generic, irrespective of the type of
Applet you are creating. While we will step through these generic steps, we
won't go into them in great detail, as I am sure you will be more than capable
of understanding what is going on during the process. Instead, what we will
focus on is the unique steps and sections of IFTTT that relate to integrating
our Raspberry Pi.

Please note that the https://ifttt.com/ free pricing tier limits the number of Applet that you
can have active at once. At the time of writing, the maximum was three active Applets.
We will be creating four Applets in this and the next chapter combined, so you will need
to archive at least one Applet on IFTTT as you work through the next chapter in order to
stay on the IFTTT free pricing tier.

Here are the steps we need to follow:

1. Log into or create your IFTTT account. If you do not already have an
IFTTT account, please visit ifttt.com/join and follow the on-screen
instructions.

We are performing these steps on the IFTTT website, ifttt.com. The process to follow for
the IFTTT phone and tablet apps will be different.

2. Once logged into IFTTT, click on your profile avatar icon (shown
highlighted with a square in the following screenshot) to reveal a menu:

Figure 13.2 – Profile avatar icon

3. Next, click the Create option in the profile menu, as shown here:

https://ifttt.com/
https://ifttt.com/join
https://ifttt.com/


Figure 13.3 – Profile menu

4. The next page you will be presented with will be the Create your own
page. Here, click the + icon between the words If and This:

Figure 13.4 – The Create your own page – part 1



5. Now, you will be asked to Choose a service. The service we need to
choose to integrate with our Raspberry Pi is called the
WebHook service, as shown here:

Figure 13.5 – The Choose a service page

6. Once you have found and identified the Webhook service, click on the
Webhooks icon to continue.

7. The next page you will be presented with will be the Choose a trigger
page, as shown in the following screenshot. Here, click on the Receive
a web request option:



Figure 13.6 – The Choose trigger page

8. Next, you will be presented with the Complete trigger fields page, as
shown here:

Figure 13.7 – The Complete trigger fields page



The Event Name field is of importance for our Raspberry Pi
integration. In the Python code that we will cover shortly, we must
ensure that the event name that's used by the code matches what we
type into this page. For our example, we are naming our event
RPITemperature.

9. After entering RPITemperature into the Event Name box, click the
Create trigger button to continue.

A Webhooks's Event Name is its unique identifier (for your IFTTT account). If you are
creating many Webhooks, then you will need to use a different Event Name to distinguish
between them.

10. Next, you will be presented with the Create Your Own page once
more. This time, you'll see that the This is now the Webhook icon:

Figure 13.8 – The Create your own page – part 2

We are now halfway through configuring our IFTTT Applet. Now
that we have configured our Webhook trigger, we need to configure
our action, which will be to send an email. After creating the
emailing action, we will revisit the Webhook trigger and discover the
URL and parameters that are used to trigger this Webhook event.

11. Next, click on the + icon between the words Then and That. You will
see the Choose action service page. On this page, search for Email and
click on the Email icon:



Figure 13.9 – The Choose action service page

12. When you see the Choose action page shown in the following
screenshot, select the Send me an email option:

Figure 13.10 – The Choose action page

13. Next, you will be presented with the Complete action fields page.
Please fill in the Subject and Body text fields, as shown in the



following screenshot. You will find an example email that was
produced by this action later in this chapter:

Figure 13.11 – The Complete action fields page

In the preceding screenshot, you will notice that some of the text is
surrounded by gray boxes; for example, Value1 and OccuredAt.
These are known as ingredients and are replaced dynamically when
the Applet is triggered. As we will see shortly in code, we will be
replacing the Value1, Value2, and Value3 ingredients with the current
temperature, humidity, and a message, respectively.



14. When you have filled in the Subject and Body text fields, click the
Create action button.

15. Finally, click on the Finish button on the Review and finish page, as
shown here:

Figure 13.12 – The Review and finish page

Congratulations! You've just created an IFTTT Applet that sends an email
when we trigger it using our Raspberry Pi. But how do we do that? That's
what we will learn about in the next section.

Triggering an IFTTT Webhook



Now that we have created our IFTTT Applet, we need to take a few more
steps to learn how to trigger our Webhook. These steps boil down to
knowing where to navigate to within IFTTT to discover your unique
Webhook URL.

Here are the steps we need to follow:

1. First, we need to navigate to the Webhooks page. There are a couple of
ways we can do this, and I'll leave it up to you which route you take:

Navigate your web browser to the Webhook services URL; that
is, ifttt.com/maker_webhook.
Alternatively, the navigation steps to take to get to this web page
are as follows:

1. Click on the profile avatar icon (as shown previously in
Figure 13.2).

2. In the menu that appears, choose the My Services item (refer
to Figure 13.3).

3. On the page that appears, find and click on the Webhooks
item.

Irrespective of the path you take, you will see the page shown in the
following screenshot:

https://ifttt.com/maker_webhooks


Figure 13.13 – The Webhooks page

2. Click on the Documentation button located in the top-right corner of the
page. You will be presented with the Webhook documentation
page shown here:



Figure 13.14 – The Webhook documentation page
Please note that in the preceding example page, I have filled in the {Event} and JSON
Body fields so that they can be referenced during our discussion. Your fields will be
initially empty.

This page holds the key pieces of information that we need in order to
integrate this Webhook trigger with our Raspberry Pi. Here are the key parts
of this page:



Your key: This is your account's Webhook API key and forms part of
your unique Webhook URL.

GET or POST request URL: Your unique Webhook URL. The unique
combination of your API key and Event Name is what associates the
URL with a triggerable IFTTT event. To integrate with our Raspberry
Pi, this is the URL we need to construct and request. We'll cover this
shortly in code.
Event name: The name of the event you want to trigger.
JSON body: Each triggerable Webhook can contain a maximum of
three data parameters presented in JSON format, and they must be
named value1, value2, and value3.
cURL command-line example: Run this example in a Terminal to
trigger the RPITemperature event (and you will receive an email).
The Test It button: Clicking this button will trigger the
RPITemperature event (and you will receive an email).

Now that we have created our IFTTT Applet and discovered where to find
the Webhook URL and how it is constructed, we can now delve into the
Python code that will trigger our IFTTT Applet.

Triggering an IFTTT Applet in Python

We're about to explore a simple application based around the DHT 11/DHT
22 circuits and code we first saw in Chapter 9, Measuring Temperature,
Humidity, and Light Levels. You can find this code in the
chapter13/ifttt_dht_trigger_email.py file.

This code will monitor the temperature using a DHT 11 or DHT 22 sensor,
and if a pre-configured high or low threshold is breached, the code will
invoke your IFTTT Webhook URL, which will then send you an email,
similar to the one shown in the following screenshot. This corresponds to the
email subject and body text you configured in the previous section, in step
13:



Figure 13.15 – Example IFTTT email 

Before we can run our sample application code, there are a few
configuration steps we need to perform. Let's take a look:

1. Open the chapter13/ifttt_dht_trigger_email.py file for editing.
2. Locate the following segment of code indicated by lines (1) and (2).

Confirm that your DHT sensor is connected to the appropriate GPIO
pin and that the correct DHT11 or DHT22 instance is being used based
on the sensor that you have:

# DHT Temperature/Humidity Sensor GPIO.

GPIO = 24                                                     # (1)

# Configure DHT sensor - Uncomment appropriate line 

# based on the sensor you have.

dht = DHT11(GPIO, use_internal_pullup=True, timeout_secs=0.5) # (2) 

#dht = DHT22(GPIO, use_internal_pullup=True, timeout_secs=0.5)

3. Now, locate the following segments of code, indicated by lines (3), (4),
and (5), and update the USE_DEGREES_CELSIUS, HIGH_TEMP_TRIGGER,
and LOW_TEMP_TRIGGER variables to values that make sense in your location:

USE_DEGREES_CELSIUS = True # False to use Fahrenheit   # (3)

HIGH_TEMP_TRIGGER   = 20 # Degrees                     # (4)

LOW_TEMP_TRIGGER    = 19 # Degrees                     # (5)

Your IFTTT Applet will be triggered and send an email when the
temperature reaches HIGH_TEMP_TRIGGER degrees or drops
to LOW_TEMP_TRIGGER degrees. The reason for high and low temperature
triggers is to create a small temperature buffer to prevent the code
triggering multiple emails if the temperature were to oscillate above
and below a single value.



4. Next, locate the following section of code starting at line (6) and update
the details shown – specifically your IFTTT API key, which we
identified in the previous section in step 2:

EVENT = "RPITemperature"                    # (6)

API_KEY = "<ADD YOUR IFTTT API KEY HERE>"

That's all our configuration done. You'll notice line (7), which is where we
construct the IFTTT Webhook URL using our API key and event name:

URL = "https://maker.ifttt.com/trigger/{}/with/key/{}".format(EVENT, API_KEY) # (7)

The remaining code in the file polls the DHT11 or DHT22 sensor, compares
the reading to the HIGH_TEMP_TRIGGER and HIGH_TEMP_TRIGGER values, and if the
temperature has been breached, constructs a requests object and calls the
IFTTT Webhook URL to trigger your Applet. We will not cover that code
here since it should be self-explanatory based on your previous experience
with the DHT11/DHT22 sensors and the Python requests library.

With our code configured, it's time to run the program in a Terminal. You
will receive an output similar to the following:

(venv) $ python ifttt_dht_trigger_email.py

INFO:root:Press Control + C To Exit.

INFO:root:Sensor result {'temp_c': 19.6, 'temp_f': 67.3, 'humidity': 43.7, 'valid': 

True}

INFO:root:Sensor result {'temp_c': 20.7, 'temp_f': 69.3, 'humidity': 42.9, 'valid': 

True}

INFO:root:Temperature 20.7 is >= 20, triggering event RPITemperature

INFO:root:Response Congratulations! You've fired the RPITemperature event

INFO:root:Successful Request.

Our example here also shows the IFTTT Applet being triggered when the
temperature goes above 20 degrees.

This now completes our IFTTT example using our Raspberry Pi in the This
role to trigger an IFTTT Applet. The basic process we covered illustrates
how easy this is to achieve! We sent an email, but you can follow the same
overall process to create other IFTTT recipes that trigger other actions, such
as turning on smart lights and appliances, adding rows to Google
spreadsheets, and creating a Facebook post. You might like to check out http
s://ifttt.com/discover for a host of ideas and possibilities. Remember that

https://ifttt.com/discover


from our perspective and our learning, it's a Webhook trigger we can use
from our Raspberry Pi to action ideas like these. Have fun!

Next, we will look at the opposite scenario to see how we can action our
Raspberry Pi.

Actioning your Raspberry Pi from
an IFTTT Applet
The previous section taught us how to trigger an IFTTT Applet from our
Raspberry Pi. In this section, we will learn how to action our Raspberry Pi
from an IFTTT Applet.

For our example, we will create an IFTTT Applet that will trigger when an
email is received. We'll use the subject of this email to control an LED that is
connected to a GPIO pin.

We will be using an IFTTT Webhook service, as we did previously, only this
time the Webhook service will be installed on the That side of our Applet
and will request a URL that we specify. This basic idea is illustrated in the
following diagram:

Figure 13.16 – Raspberry Pi assuming the That role in an IFTTT Applet

Let's look at two possible methods we can use with the IFTTT Webhook
service to request a URL that can then be seen by our Raspberry Pi's Python
code.



Method 1 – using the dweet.io service as an
intermediary

One method to integrate the IFTTT with our Raspberry Pi is to use the
dweet.io service. We covered dweet.io, along with Python examples, in Chapt
er 2, Getting Started with Python and IoT.

In brief, here is how we will use dweet.io alongside IFTTT and our Python
code:

1. In our IFTTT Webhook, we'll use a dweet.io URL to publish a dweet
(containing an instruction to turn the LED on, off, or make it blink).

2. Our Raspberry Pi will run Python code to retrieve the dweet published
by the IFTTT Webhook.

3. Our code will then control the LED based on the command specified in
the dweet.

This is the method we will use for our example. The advantage of this
method is that we do not need to worry about configuring firewalls and port
forwarding rules on your router. Plus, it means we can run the example in
environments – for example, at work – where router configurations may not
be practical or even possible.

The code that we will be using for this dweet.io-based integration can be
found in the chapter13/dweet_led.py file, which is an exact copy of the
chapter02/dweet_led.py file from Chapter 2, Getting Started with Python and IoT.

Method 2 – creating a Flask-RESTful service

To use this method, we would need to create a RESTful service, similar to
what we did in Chapter 3, Networking with RESTful APIs and Web Socket
Services Using Flask (the code that can be found in
chapter02/flask_api_server.py, which changes the brightness of a LED (rather
than setting it to on/off/blinking), would be a great starting point).



We would also need to expose our Raspberry Pi to the public internet, which
would require us to open a port and create a port forwarding rule in our local
firewall or router. Then, together with our public IP (or domain name), we
could construct a URL and use this directly with the IFTTT Webhook
service.

For prototyping ideas and creating demos, a simple alternative to opening up firewalls
and creating port forwarding rules could be to use a service such as Local Tunnels (localt
unnel.github.io/www) or ngrok (ngrok.com), which can help you expose a device to the internet.

Since this method requires configuration and setup on your end that is
beyond what we can practically do as part of this chapter, we will stick with
the dweet.io approach shown in the previous section.

Next, we will create a circuit that we can use with our second IFTTT Applet,
which we will build shortly.

Creating the LED circuit

Our forthcoming example will require an LED, as well as a series resistor
connected to a GPIO pin (GPIO 21, for our example). I'm confident that,
given the number of times we've built LED circuits already in this book, you
could wire this up on your own with no problems! (And in case you do need
a reminder, see Figure 2.7 in Chapter 2, Getting Started with Python and IoT.)

Keep the DHT 11/DHT 22 circuit you created for our first IFTTT Applet example
because we will reuse this circuit again later in this chapter.

When you have your circuit ready, we will continue and run our sample
program.

Running the IFTTT and LED Python program

In this section, we will run our program and obtain a unique thing name and
URL for use with the dweet.io service.

Here are the steps to follow:

https://localtunnel.github.io/www/
https://ngrok.com/


1. Run the code that can be found in the chapter13/dweet_led.py file in a
Terminal. You will receive an output similar to the following (your
thing name and therefore your URLs will be different):

(venv) $ python dweet_led.py

INFO:main:Created new thing name 749b5e60

LED Control URLs - Try them in your web browser:

  On : https://dweet.io/dweet/for/749b5e60?state=on

  Off : https://dweet.io/dweet/for/749b5e60?state=off

  Blink : https://dweet.io/dweet/for/749b5e60?state=blink

As we mentioned previously, chapter13/dweet_led.py is an exact copy of
the same program we discussed in Chapter 2, Getting Started with
Python and IoT. If you need more context around how this program
works, please revisit that chapter and the code discussion contained
therein.

2. Keep your Terminal open with the program running as we will need to
copy one of the URLs in the next section. We'll also need the program
running to test our upcoming integration.

Next, we will create another IFTTT Applet to integrate with this program via
dweet.io.

Creating the IFTTT Applet

We are about to create another IFTTT Applet. The overall process is very
similar to the one we followed for the Applet we created previously, except
our Raspberry Pi (via Webhook integration) will be at the That end of the
Applet, as shown in Figure 13.16.

Here are the steps we need to follow to create our next Applet. I've left out
many of the common screenshots this time around due to their similarity
with our previous IFTTT Applet creation process:

1. Once logged into IFTTT, click on your profile avatar icon and select
Create from the drop-down menu.

2. On the If + This Then Than page, press the + icon.
3. In the Choose a service page, search for and select the Email service.



4. On the Choose trigger page, select Send IFTTT an email tagged (make
sure it's the option with the word in it tagged).

5. On the next page, enter LED as the Tag input and click the Create
trigger button:

Figure 13.17 – The Complete trigger fields page

6. On the If <email icon> This Then + Than page, press the + icon.
7. On the Choose action service page, search for and select the

Webhooks service.
8. Next, on the Choose action page, select Make a web request.

9. The next page you'll come across is called Complete action fields. This
is where we'll use the dweet URL that our program printed to the
Terminal in the previous section:





Figure 13.18 – The Complete action fields page

Here are the sub-steps you need to follow to complete the fields on
this page:

1. Copy the On URL from your Terminal (for example,
https://dweet.io/dweet/for/749b5e60?state=on – noting that your thing
name will be different).

2. Paste this URL into the IFTTT URL field.
3. In the URL field, delete the word on (so the URL is now

https://dweet.io/dweet/for/749b5e60?state=).
4. Click the Add ingredient button (under the URL field) and choose

Subject (so that the URL is now
https://dweet.io/dweet/for/749b5e60?state={{Subject}}).

5. The other fields can be left as their default values.
6. Click the Create action button:



Figure 13.19 – The Complete action fields page

7. Finally, on the Review and finish page, click the Finish button.

Well done! We've now created our second Applet. Next, we will use this
Applet to control our LED by sending an email instructing the LED to turn
on, off, or blink.

Controlling the LED from an email



Now that we have created our Applet to control our LED using an email, it's
time to test out the integration. 

Here are the steps to create the email:

1. Make sure the program in the chapter13/dweet_led.py file is still running in
your Terminal.

2. Open your favorite email program and create a new email.
3. Use trigger@applet.ifttt.com as the email's To address.

When sending a trigger email to IFTTT, it must come from the same email address that
you use with IFTTT (you can visit https://ifttt.com/settings to check your email address).

4. As the subject, use one of the following to control the LED:

#LED On

#LED Off

#LED Blink

IFTTT strips off the #LED tag, so our dweet_led.py program only receives the text On, Off,
or Blink. The leading space is stripped off in our Python code.

The following screenshot shows an example email that will make the
LED blink:

https://ifttt.com/settings


13.20 – Trigger email example

5. Send the email.
6. Wait a moment and the LED will change state.

Now that we've learned how to control our LED via email using IFTTT, let's
quickly cover a few troubleshooting tips.

IFTTT troubleshooting

If your IFTTT Applets do not appear to be triggering and actioning, here are
a few troubleshooting avenues for you to explore and try:

In dweet_led.py, try the following:
Turn on debug logging; for example, logger.setLevel(logging.DEBUG).
Change the dweet retrieval method located near the end of the
source file. If you are using stream_dweets_forever(),



try poll_dweets_forever() instead, since it is more resilient to transient
connectivity issues.

On the IFTTT website, you can inspect the activity log for any Applet
by doing the following:

1. Navigating to the My Services option under the profile menu
2. Selecting a service (for example, Webhooks)
3. Selecting the Applet you want to inspect
4. Clicking the Settings button
5. Clicking the View activity button and/or trying the Check now

button
You can also check the following IFTTT resources:

Common errors and troubleshooting tips, available at https://help.i
fttt.com/hc/en-us/articles/115010194547-Common-errors-and-troubleshooting-

tips

Troubleshooting Applets & Services, available at https://help.ifttt.
com/hc/en-us/categories/115001569887-Troubleshooting-Applets-Services.

IFTTT also has a Best Practices page available at https://help.ifttt.com/hc/en-us/categories/1150
01569787-Best-Practices where you can learn more about the platform.

As we discussed in the Triggering an IFTTT Applet from your Raspberry
Pi section, for IFTTT triggers, you can adopt the same overall process we
just covered for actioning your Raspberry Pi from any IFTTT recipe. Again,
check out https://ifttt.com/discover for some ideas, and this time, remember
that from our perspective, we use a Webhook action in our IFTTT recipes to
control our Raspberry Pi. Here's an example – use Google Assistant to voice
control your Raspberry Pi! Oh, wait a moment – we'll be doing this in the
next chapter, Chapter 14, Tying It All Together – An IoT Christmas Tree!

We've now explored how to integrate our Raspberry Pi with IFTTT in two
ways – as the This role to trigger an Applet and in the That role, whereby we
can action our Raspberry Pi from a triggered Applet. Next, we will look at a
way to create an IoT dashboard that we can use to visualize data.

https://help.ifttt.com/hc/en-us/articles/115010194547-Common-errors-and-troubleshooting-tips
https://help.ifttt.com/hc/en-us/categories/115001569887-Troubleshooting-Applets-Services
https://help.ifttt.com/hc/en-us/categories/115001569787-Best-Practices
https://ifttt.com/discover


Visualizing data with the
ThingSpeak platform
We have just learned how to create simple automation using the IFTTT
platform. In this section, we will integrate with the ThingSpeak platform to
visually display temperature and humidity data that we'll collect using our
DHT 11 or DHT 22 sensors. We will be using the DHT 11/DHT 22 circuit
we created earlier in this chapter.

ThingSpeak (thingspeak.com) is a data visualization, aggregation, and analysis
platform. We will be focusing on the data visualization aspect, and
specifically on how to integrate our Raspberry Pi into this platform. 

I've chosen ThingSpeak for our example in this section for a couple of
reasons – it's simple and easy to set up and integrate with, and for simple
data visualizations like the ones we will be doing, it's free. There are many
other visualization platforms available, and they all have their own unique
features, pricing structures, and complexities. I've included a few
suggestions in the Other IoT and automation platforms for further
exploration section for you to explore.

If you wish to explore the aggregation and analysis features in more depth, you can find
many quality examples, tutorials, and documentation by just searching for ThingSpeak.
As a suggestion, start your investigation at https://au.mathworks.com/help/thingspeak.

An example of the dashboard we will be creating can be seen in the
following screenshot. Notice the Channel Settings and API Keys items
shown in the Tab bar – we will be referring to these tabs shortly:

https://thingspeak.com/
https://au.mathworks.com/help/thingspeak




Figure 13.21 – The ThingSpeak channel dashboard

Our first stop before we can integrate our Raspberry Pi and send data to
ThingSpeak is to configure the platform for our integration.

Configuring the ThinkSpeak platform

Configuring ThinkSpeak is relatively simple – in fact, it's one of the most
straightforward platforms in its class I have come across. Here are the steps
that we need to follow:

1. First, you will need to create a ThingSpeak account for yourself. Visit
their website, thingspeak.com, and click on the Sign Up button.

2. Once you have created your ThinkSpeak account and logged into the
platform, you should land on the My Channels page; that is, https://thin
gspeak.com/channels.

In the ThingSpeak ecosystem, a channel is a virtual place where we store our data,
dashboards, and visualizations. It's analogous to a workspace. 

3. Next, we need to create a new channel by clicking on the New Channel
button:

https://thingspeak.com/
https://thingspeak.com/channels


Figure 13.22 – ThingSpeak channel configuration

On the New Channel page, enter the following details:

Name: Environmental Data (or any name of your choice)
Field1: temperature
Field2: humidity

You can leave all the other fields as their default values. 

If you need to review or change your channel settings later, they can be found on the
Channel Settings tab, as shown previously in Figure 13.19.

4. Once you have filled in the fields, scroll to the bottom of the page and
click the Save Channel button. You will be presented with a page
similar to the one pictured in Figure 13.19, except it will be blank with
no data.

To add the two gauges seen in Figure 13.19, to this page, do the
following:

1. Press the Add Widgets button.



2. Select the Gauge icon and press Next.
3. In the Configure widget parameters dialog, type in a name for the

gauge (for example, temperature) and select the appropriate field
number (Field1 for temperature, Field2 for humidity, respectively).

4. You can adjust and experiment with the other parameters as you
desire to set max/min ranges, coloring, and other display
properties for your gauge.

5. Repeat the process for the second gauge.

Don't worry if the gauges (or charts) display Field value unavailable. This is correct
since we have not sent any temperature or humidity data to ThingSpeak yet.

5. Now, it's time to obtain an API key and channel ID, which we will need
in order to configure our forthcoming Python code. Click on to the API
Keys tab:

Figure 13.21 – The API Keys tab

Here is the information we need to collect for our Python program:

Write API Key (because we will be writing data to the platform)



Channel ID (this is listed on all ThinkSpeak pages, near the top)

Now that we have created and configured a simple ThinkSpeak channel and
collected our API key and Channel ID, we can move onto our Python code.

Configuring and running the ThinkSpeak Python
program

We have provided two sample programs that integrate with ThinkSpeak.
They are as follows:

chapter13/thingspeak_dht_mqtt.py: An example that uses MQTT to send data
into a ThinkSpeak channel.

chapter13/thingspeak_dht_http.py: An example that uses the Python requests
library to make RESTful API calls that send data to a ThinkSpeak
channel.

The core concepts of these two programs were discussed in earlier chapters.
For your reference, they are as follows:

MQTT: We discussed the Paho-MQTT library in Chapter 4, Networking
with MQTT, Python, and the Mosquitto MQTT Broker. A key difference
for this chapter is that we are using the Paho-MQTT simplifying client
wrapper to publish MQTT messages instead of a full life cycle
example.
We covered RESTful APIs and the requests library in Chapter 2, Getting
Started with Python and IoT.
The code related to the DHT 11/DHT 22 temperature and humidity
sensor was covered in Chapter 9, Measuring Temperature, Humidity, and
Light Levels.

Let's configure these programs, run them, and see the data appear in
ThingSpeak. We'll walk through the example code provided
in chapter13/thingspeak_dht_mqtt.py; however, the overall process will be the
same for chapter13/thingspeak_dht_http.py:



1. Open the chapter13/thingspeak_dht_mqtt.py file for editing.
2. Near the top of the file, identify the following code starting at line (1)

and confirm your DHT sensor is connected to the correct GPIO pin and
that the correct sensor instance is enabled in code:

# DHT Temperature/Humidity Sensor

GPIO = 24                                                   # (1)

#dht = DHT11(GPIO, use_internal_pullup=True, timeout_secs=0.5)

dht = DHT22(GPIO, use_internal_pullup=True, timeout_secs=0.5)

3. Next, identify the following code segment starting at line (2) and update
it with your ThingSpeak write API key, Channel ID, and time zone.
Note that CHANNEL_ID is only used in the MQTT integration (so it does not
appear in the thingspeak_dht_http.py file):

# ThingSpeak Configuration

WRITE_API_KEY = "" # <<<< ADD YOUR WRITE API KEY HERE   # (2)

CHANNEL_ID = ""    # <<<< ADD YOUR CHANNEL ID HERE

# See for values https://au.mathworks.com/help/thingspeak/time-zones-

reference.html

TIME_ZONE = "Australia/Melbourne"

4. Save your file and run the program. You should receive an output
similar to the following:

(venv) $ python thing_speak_dht_mqtt.py

INFO:root:Collecting Data and Sending to ThingSpeak every 600 seconds. 

Press Control + C to Exit

INFO:root:Sensor result {'temp_c': 25.3, 'temp_f': 77.5, 'humidity': 43.9, 

'valid': True}

INFO:root:Published to mqtt.thingspeak.com

5. Within seconds, you should see your data appear on your ThingSpeak
dashboard!

Congratulations! With that, you have created a ThingSpeak dashboard to
visualize data that's been collected by your Raspberry Pi. Visualizing data is
a frequent requirement for many monitoring IoT projects, whether it be
simple indicator displays such as gauges or producing historic graphs to
visualize trends. How you approach visualization for your data all depends
on your requirements; however, the one thing that's common to all these
requirements is that there are many ready-to-go services such as ThingSpeak
to help you achieve this as an alternative to custom coding dashboard and
visualization applications yourself.



Now, I will conclude this chapter with a brief discussion of other popular
IoT platforms that you may like to explore and use in your future projects.

Other IoT and automation
platforms for further exploration
So far in this chapter, we have seen IFTTT and ThingSpeak in action, as
well as how to integrate them with our Raspberry Pi. We saw how to use
IFTTT to create simple workflows and how we can visualize data with
ThingSpeak – two very different ideas, but nonetheless, they are both IoT
platforms.

Both these platforms are immensely powerful and offer a wide range of
features and possibilities beyond what we can cover in a single chapter, so I
do encourage you to seek out their documentation and examples to advance
your learning.

There are many other IoT platforms, applications, and frameworks that are
available. This section will provide a short, curated list based on my
experience. They all fit in nicely with this book's Python- and Raspberry Pi-
based themes.

Zapier

We've already seen IFFF in action. IFTTT is more consumer-focused in
terms of the services that it supports, plus as we have seen, we are limited to
a single This trigger and a single That action.

Zappier is very similar in principle to IFTTT, but with a more business-
orientated focus, including a range of services and integrations not available
with IFTTT (there will be services and integrations that are unique to IFTTT
also). Furthermore, Zapier is also capable of much more complex workflows
for triggering events and actions.



You will find it relatively simple to reimplement our two IFTTT examples
from this chapter in Zappier.

Website: https://zapier.com.

IFTTT platform

In this chapter, we used IFTTT as an end user and performed our
integrations using Webhooks. If you are a business wishing to create gadgets
you want to expose as first-class IFTTT services, then you should check out
the IFTTT platform.

Website: https://platform.ifttt.com.

ThingsBoard IoT platform

ThingsBoard is an open source IoT platform that you can download and host
on your Raspberry Pi. On the surface, it will allow you to build dashboards
and data visualizations, just as we did in ThingSpeak. Compared to
ThingSpeak, you will find that ThingsBoard has a steeper learning curve
when it comes to creating your first dashboard; however, you will also find
that it offers a more extensive set of widgets and customization options.
Plus, unlike ThingSpeak, which can only consume data, ThingsBoard allows
you to embed controls into a dashboard that lets you interact with your
Raspberry Pi using MQTT.

From experience, working your way through the ThingsBoard
documentation and tutorials (many are available as videos) is a must if you
want to learn how to use this platform since on your first visit to its UI, it's
not immediately obvious what you need to do.

Here are a few specific resources from their website:

Raspberry Pi installation instructions: https://thingsboard.io/docs/user-guid
e/install/rpi (don't worry if it says Raspberry Pi 3; it will still work on a
4)

https://zapier.com/
https://platform.ifttt.com/
https://thingsboard.io/docs/user-guide/install/rpi


Getting started guide: https://thingsboard.io/docs/getting-started-guides/hell
oworld

While there are no Python-specific examples in the getting started guide,
there are Mosquito MQTT examples and cURL examples that demonstrate
the RESTful API. A suggestion would be to use the two ThingSpeak code
examples presented in this chapter as a starting point and adopt them to use
the ThingBoard-specific MQTT and/or RESTful APIs.

Website: https://thingsboard.io.

Home Assistant

Home Assistant is a pure Python home automation suite. Out of the box,
Home Assistant can connect with a wide range of internet-enabled devices
such as lights, doors, fridges, and coffee machines – to mention only a few.

Home Assistant gets a mention here, not only because it is built with Python,
but because it allows us to integrate directly with the host Raspberry Pi's
GPIO pins, as well as with a remote Raspberry Pi's GPIO pins using
PiGPIO's remote GPIO feature. Plus, there are MQTT and RESTful API
integration options available.

While simple in concept and end user operation, there is a highish learning
curve (and a fair amount of experimentation needed) when it comes to
configuring Home Assistant since most of the integrations are performed by
manually editing YAML Ain't Markup Language (YAML) files directly.

In relation to GPIO integrations, I have selected some resources from their
website to get you started. I recommend reading the glossary first as it will
help you better understand the Home Assistant terminology and therefore
help you better understand other parts of the documentation:

Installation: There are a variety of ways that Home Assistant can be
installed. For testing the platform and building a GPIO integration, I
suggest the "Virtual Environment" option, documented at https://www.hom
e-assistant.io/docs/installation/virtualenv.

https://thingsboard.io/docs/getting-started-guides/helloworld
https://thingsboard.io/
https://www.home-assistant.io/docs/installation/virtualenv


Glossary: https://www.home-assistant.io/docs/glossary.
Available Raspberry Pi integrations: https://www.home-assistant.io/integrati
ons/#search/Raspberry%20Pi.

Website: https://www.home-assistant.io.

Amazon Web Services (AWS)

Another suggestion is Amazon Web Services, specifically two services – IoT
Core and Elastic Beanstalk. These options will provide you with immense
flexibility and a near-endless number of options when it comes to creating
IoT applications. IoT Core is Amazon's IoT platform where you can create
dashboards, workflows, and integrations, while Elastic Beanstalk is their
cloud platform where you can host your own programs – including Python –
 in the cloud.

Amazon Web Services is an advanced development platform, so you will
need to invest weeks into learning how it works and how to build and deploy
applications using it, but I can promise you that you will learn a lot during
the process! Plus, their documentation and tutorials are very high quality.

Amazon IoT Core: https://aws.amazon.com/iot-core.

Amazon Elastic Beanstalk: https://aws.amazon.com/elasticbeanstalk.

Microsoft Azure, IBM Watson, and Google Cloud

Finally, I do want to mention these other IT giants, who all offer their own
cloud and IoT platforms. My suggestion regarding AWS is purely due to my
more in-depth experience with this platform. The comparative platforms
offered by Microsoft, IBM, and Google are also high quality and backed
with excellent documentation and tutorials, so if your personal preference is
with one of these providers, you are still in good hands.

Summary

https://www.home-assistant.io/docs/glossary
https://www.home-assistant.io/integrations/#search/Raspberry%20Pi
https://www.home-assistant.io/
https://aws.amazon.com/iot-core
https://aws.amazon.com/elasticbeanstalk


In this chapter, we explored and learned how to use our Raspberry Pi with
both the IFTTT and ThinkSpeak IoT platforms. We created two IFTTT
examples where our Raspberry Pi performed the This role in an IFTTT
Applet to start an IFTTT workflow. We also saw how to use our Raspberry
Pi in the That role so that it can be actioned by an IFTTT Applet. Next, we
covered an example of how to integrate with the ThinkSpeak IoT platform to
visualize temperature and humidity data collected by our Raspberry Pi.
Finally, we discussed other IoT platform options that you may like to
investigate and experiment with.

We certainly only covered the basics of what is possible with visualization
and automation platforms in this chapter. I encourage you to seek our further
IFTTT examples and ideas you can experiment with, and also explore the
other platforms that we mentioned. And remember, while every platform
will be different and have its own integration considerations, the commonly
accepted standards to achieve integration boil down to RESTful APIs and
MQTT, both of which you now have experience with!

In the next chapter, we will cover a comprehensive end-to-end example to
pull together many of the concepts and examples that we have covered
throughout this book.

Questions
As we conclude this chapter, here is a list of questions for you to test your
knowledge regarding this chapter's material. You will find the answers in the
Assessments section of the Appendix:

1. With our first IFTTT Applet, where we monitored the temperature, why
did we use a different high and low temperature value to trigger our
Applet and send an email?

2. What was the advantage of using an intermediary service such as
dweet.io with our IFTTT Webhook service?

3. What are some of the core differences between IFTTT and Zapier?
4. Can you control your Raspberry Pi from a ThingSpeak dashboard?



5. In relation to data, what is the limitation of the IFTTT Webhook service
when used as an action (that is, on the That side of an applet)?

6. You want to prototype the switching on and off of an over-the-counter
smart light bulb based on a Raspberry Pi's GPIO pin state. What
platforms could you use?



Tying It All Together - An IoT
Christmas Tree

Welcome to our final chapter! We will round out this book by pulling
together various topics and ideas from earlier chapters to build a
multifaceted IoT program. Specifically, we will be building an internet-
controllable Christmas tree, an IoTree, if you don't mind the pun!

Our approach in this chapter will be to reuse two circuits from previous
chapters to create Christmas tree lighting (using an APA102 LED strip) and
a rocking mechanism to make the tree shake (we will use a servo) and jingle
(well, it'll jingle as it shakes if you decorate the tree with bells!). We will
then revisit and adapt our learning about RESTful APIs and MQTT to create
two ways in which we can control the lighting and servo over a network or
the internet. We will then revisit dweet.io and If-This-Then-That
(IFTTT) and build IFTTT Applets to control the tree via email and your
voice using Google Assistant!

Here is what we will cover in this chapter:

Overview of the IoT Christmas tree
Building the IoTree circuit
Configuring, running, and using the Tree API service
Configuring, running, and using the Tree MQTT service
Integrating the IoTree with dweet.io
Integrating with email and Google Assistant via IFTTT
Ideas and suggestions to extend your IoTree

Technical requirements
To perform the exercises in this chapter, you will need the following:

Raspberry Pi 4 Model B
Raspbian OS Buster (with desktop and recommended software)



Minimum Python version 3.5

These requirements are what the code examples in this book are based on.
It's reasonable to expect that the code examples should work without
modification on a Raspberry Pi 3 Model B or a different version of Raspbian
OS as long as your Python version is 3.5 or higher.

To complete the section titled Integration with Google Assistant, at a
minimum, you will need the following prerequisites:

A Google account (if you have a Gmail email account, that's all you
need)
An Android phone or the Google Assistant app for iOS

You will find this chapter's source code in the chapter14 folder in the GitHub
repository available here: https://github.com/PacktPublishing/Practical-Python-Prog
ramming-for-IoT.

You will need to execute the following commands in a terminal to set up a
virtual environment and install the Python libraries required for the code in
this chapter:

$ cd chapter14              # Change into this chapter's folder

$ python3 -m venv venv      # Create Python Virtual Environment

$ source venv/bin/activate  # Activate Python Virtual Environment

(venv) $ pip install pip --upgrade        # Upgrade pip

(venv) $ pip install -r requirements.txt  # Install dependent packages

The following dependencies are installed from requirements.txt:

PiGPIO: The PiGPIO GPIO library (https://pypi.org/project/pigpio)
Flask-RESTful: A Flask extension for creating RESTful API services
(https://pypi.org/project/Flask-RESTful)
The Paho MQTT client: https://pypi.org/project/paho-mqtt
Pillow: Python Imaging Library (PIL) (https://pypi.org/project/Pillow)
The Luma LED Matrix library: https://pypi.org/project/luma.led_matrix

Requests: A high-level Python library for making HTTP requests (http
s://pypi.org/project/requests)

https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://pypi.org/project/pigpio
https://pypi.org/project/Flask-RESTful
https://pypi.org/project/paho-mqtt
https://pypi.org/project/Pillow
https://pypi.org/project/luma.led_matrix
https://pypi.org/project/requests


PyPubSub: In-process messaging and events (https://pypi.org/project/PyP
ubSub)

The electronic components we will need for this chapter's exercises are as
follows:

1 x MG90S hobby servo (or equivalent 3-wire, 5-volt hobby servo)
1 x APA102 RGB LED strip
1 x logic level shifter module
External power supply (at a minimum a 3.3 V/5 V breadboard-
mountable power supply)

A video showing this tree in action is available at https://youtu.be/15Xfuf_99Io. Please note
that this tree uses RGB LEDs and an alternating blinking animation for the lights. We'll
be using an APA102 LED strip in this chapter that is capable of creating more animation
effects. The demo tree can also play a tune, which we will not cover in this chapter
(although you'll easily be able to add that feature if you wish by adopting the RTTTL
example from Chapter 8, Lights, Indicators, and Displaying Information).

Overview of the IoT Christmas tree
Before we commence our chapter by building circuits and looking at code,
let's take a moment to understand what our IoTree will do and how we will
be building it. The tree pictured in Figure 14.1 is representative of what you
could create after completing this chapter:

https://pypi.org/project/PyPubSub
https://youtu.be/15Xfuf_99Io


Figure 14.1 – IoTree example

Now, I'll need to let you know up front that we're only covering the
electronics and programming of the IoTree. You'll need to apply your
initiative and bring your maker skills to the table to build the tree and bring
it to life. I suggest using a small table-top Christmas tree since part of our
build involves a servo to shake the tree. Our hobby-grade servo is powerful
enough to shake a small tree; however, it's unlikely that it could shake a full-
size Christmas tree (you'll need to research and get a more powerful servo if
you aspire to upgrade our build to a larger tree – and please send me a
picture if you do!).

Our base-level tree will comprise the following electronic components:

An APA102 LED light strip for the tree lights (we covered the APA102
LED strip in Chapter 8, Lights, Indicators, and Displaying Information).
A servo to make the tree shake and jingle – for this, you will need some
bell ornaments on the tree that will jingle when the tree shakes (we
covered servos in Chapter 10, Movement with Servos, Motors, and
Steppers).



Programmatically and structurally, our tree program will be drawing on the
following concepts we've learned about:

The dweet.io service: First covered in Chapter 2, Getting Started with
Python and IoT, and revisited in Chapter 13, IoT Visualization and
Automation Platforms
RESTful API with Flask-RESTful: From Chapter 3, Networking with
RESTful APIs and Web Sockets Using Flask
Message Queue Telemetry Transport (MQTT): Covered in Chapter 4,
Networking with MQTT, Python, and the Mosquitto MQTT Broker.
A thread and Publisher-Subscriber (PubSub) approach to IoT
programs: Covered in Chapter 12, Advanced IoT Programming Concepts
– Threads, AsyncIO, and Event Loops
The IFTTT IoT platform: Covered in Chapter 13, IoT Visualization and
Automation Platforms

As we proceed through this chapter, we are going to assume you have an
understanding of the concepts from each of the aforementioned chapters, and
that you have performed the exercises presented in each chapter, including
building the circuits and understanding the circuit and code-level concepts
that make the circuits work.

Our first task will be to build the circuit needed for our IoTree, which we
will do next.

Building the IoTree circuit
It's time to get building! Please construct the circuit illustrated in Figure
14.2:



Figure 14.2 – IoTree circuit schematic diagram

This circuit hopefully looks familiar. It's a combination of two circuits that
we have seen before:

The APA102 (with a logic level shifter) circuit from Figure 8.4, in Chapt
er 8, Lights, Indicators, and Displaying Information
The servo circuit from Figure 10.2, in Chapter 10, Movement with Servos,
Motors, and Steppers

Please consult these respective chapters if you need step-by-step instructions
on building this circuit on your breadboard.

Please remember that you will need to use an external power supply to power your
APA102 and servo, as they will draw too much current to use the 5-volt pin on your
Raspberry Pi.

When you have completed your circuit build, next let's briefly discuss three
programs that can be used to control this circuit.

Three IoTree service programs



There are three separate programs to accompany our IoTree, each taking a
slightly different approach to work with our lights and servo. The programs
are as follows:

The Tree API service (found in the chapter14/tree_api_service folder):
This program provides a RESTful API created with Flask-RESTful to
control the lights and servo. It also includes a basic HTML and
JavaScript web app that uses the API. We will discuss the Tree API
service further in the section titled Configuring, running, and using the
Tree API service.
The Tree MQTT service (found in
the chapter14/tree_mqtt_service folder): This program will allow us to
control the lights and servo by publishing MQTT messages. We will
discuss the Tree MQTT service further in the section titled Configuring,
running, and using the Tree MQTT service.
The dweet integration service (found in
the chapter14/dweet_integration_service folder): This program receives
dweets and republishes them as MQTT messages. We can use this
program together with the Tree MQTT service program to control our
lights and servo using dweet.io, which thus provides us with an easy
way to integrate our IoTree with a service such as IFTTT. We will
discuss the dweet integration service more in the section titled
Integrating the IoTree with dweet.io.

Now that we have briefly discussed the programs that make up this chapter's
examples, let's configure and run our Tree API service and use it to make the
lights and servo work.

Configuring, running, and using the
Tree API service
The Tree API service program provides a RESTful API service for
controlling our IoTree's APA102 LED strip and servo. You can find the Tree
API service program in the chapter14/tree_api_service folder. It contains the
following files:



README.md: The full API documentation with examples for the Tree API
service program.
main.py: This is the program's main entry point.
config.py: Program configuration.
apa102.py: A Python class that integrates with the APA102 LED strip.
The core of this code is very similar to the APA102 Python code we
explored back in Chapter 8, Lights, Indicators, and Displaying
Information, only now it is structured as a Python class, uses a thread to
run light animations, plus has a few other small additions, such as code
to make the LEDs blink.
apa102_api.py: Flask-RESTful resource classes that provide the APA102
API. It draws upon the Flask-RESTful code and examples from Chapter
3, Networking with RESTful APIs and Web Sockets Using Flask.
servo.py: A Python class for controlling the servo. It draws upon the
servo code we covered back in Chapter 10, Movement with Servos,
Motors, and Steppers.
servo_api.py: Flask-RESTful resource classes that provide the servo API.
templates: This folder contains the example web app's index.html file.
static: This folder contains the static JavaScript libraries and an image
used by the web app.

A diagram depicting the Tree API service program architecture is shown in
Figure 14.3:



Figure 14.3 – Tree API service architecture block diagram

Here is the high-level operation of the Tree API service for the API request
shown by the dotted line in the preceding diagram:

1. An external client makes a POST request to the
/lights/colors endpoint at #1.

2. The request is handled by the Flask framework/server at #2. (The Flask
and Flask-RESTful setup can be found in main.py.)

3. The /lights/* endpoint is routed to the appropriate Flask-RESTful
resource at #3 (APA102 – that is, the light – resources are defined
in apa102_api.py). The endpoint setup and resource registration with
Flask-RESTful are found in main.py.

4. At #4, the appropriate resource is invoked (in this example, it will be
ColorControl.post()), which then parses and validates the query string
parameters (that is, colors=red%20blue&pattern=yes). 



5. Finally, at #5, ColorControl.post() then calls the appropriate methods in an
instance of APA102 (defined in apa102.py, and set up in main.py) that
directly interfaces with and updates the physical APA102 LED strip
with the repeating pattern of red and blue.

Now that we have an understanding of how our Tree API service works,
before we can run our Tree API service, first we need to check its
configuration. We'll do that next.

Configuring the Tree API service

The Tree API service configuration is found in
the chapter14/tree_api_service/config.py file. There are many configuration
options in this file, and they mostly relate to the configuration of the
APA102 (discussed in Chapter 8, Lights, Indicators, and Displaying
Information) and the servo (discussed in Chapter 10, Movement with Servos,
Motors, and Steppers). You will find this file and the configuration options
well commented.

The default configuration will be adequate for running an example locally on
your Raspberry Pi; however, the one configuration parameter you should
check is APA102_NUM_LEDS = 60. If your APA102 LED strip contains a different
number of LEDs, please update this configuration appropriately.

Let's run the Tree API service program and create some light (and
movement)!

Running the Tree API service

It's now time to run the Tree API service program and send it RESTful API
requests to make it work. Here are the steps to run and test our Tree API
service:

1. Change into the chapter14/tree_api_service folder and start the main.py
script, as shown:



# Terminal 1

(venv) $ cd tree_api_service

(venv) $ python main.py

* Serving Flask app "main" (lazy loading)

... truncated ...

INFO:werkzeug: * Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)

2. Next, open a second terminal and run the following curl command to set
the repeating light pattern sequence to red, blue, black:

# Terminal 2

$ curl -X POST "http://localhost:5000/lights/color?

colors=red,blue,black&pattern=yes"

3. Also in Terminal 2, run this next command to start making the lights
animate:

# Terminal 2

$ curl -X POST "http://localhost:5000/lights/animation?mode=left&speed=5"

Other animation modes you can use for the mode parameter, in
addition to left, include right, blink, rainbow, and stop. The speed
parameter takes a value between 1 and 10.

4. To clear or reset the LED strip, run the following command, again in
Terminal 2:

# Terminal 2

$ curl -X POST "http://localhost:5000/lights/clear"

5. To make the servo sweep (that is, to make the tree shake), run the
following command in Terminal 2:

# Terminal 2

$ curl -X POST "http://localhost:5000/servo/sweep"

The servo should sweep back and forth a number of times. If you
want to make the servo sweep more times or need to increase its
range of movement, then you can adjust the SERVO_SWEEP_COUNT and
SERVO_SWEEP_DEGREES configuration parameters in
the chapter14/tree_api_service/config.py file.

If you find your LEDs dimming, flickering, or otherwise behaving erratically when you
make the servo move, or your servo twitches as you change the APA102 LEDs, chances
are that your external power supply cannot deliver enough current to run both the LEDs



and servo simultaneously. As in interim measure, if you don't have another power supply,
try reducing the number of LEDs (APA102_NUM_LEDS in config.py) and/or reducing the LED
contrast (APA102_DEFAULT_CONTRAST, also in config.py). This will lower the current
requirements of the LED strip.

6. Finally, let's run the web app and control our IoTree from a web
browser by opening a web browser on your Raspberry Pi desktop and
navigating to the URL http://localhost:5000. You should see a web page
similar to the one pictured here:

Figure 14.4 – Example IoTree web app

Try the following actions:

Click on colors in the color bar and watch that color get pushed to the
APA102 LED strip.



Click the Pattern Fill button to fill the APA102 LED strip with the
selected colors.
Click Left to start an animation.

The JavaScript behind this web app (found in
chapter14/tree_api_service/templates/index.html) is simply calling our IoTree API
similar to what we have already done using curl, only it's doing it using
jQuery. jQuery and JavaScript are beyond the scope of this book; however,
they are briefly touched on in Chapter 3, Networking with RESTful APIs and
Web Sockets Using Flask.

You will find the full set of API documentation for the IoTree with curl examples in
the chapter14/tree_api_service/README.md file.

Our RESTful API implementation provides the basic API endpoints that we
need for this chapter; however, I am more than confident that you will be
able to expand and adapt this example for your own projects or add new
functionality to your IoTree. I'll provide suggestions on how you can expand
your IoTree based on what you have learned in this book toward the end of
the chapter in the section titled Ideas and suggestions to extend your IoTree.

Now that we have run and seen how to control our IoTree's lights and servo
with a RESTful API, next we will look at an alternative service
implementation that will allow us to control our IoTree using MQTT.

Configuring, running, and using the
Tree MQTT service
The Tree MQTT service program provides an MQTT interface for
controlling our tree's APA102 LED strip and servo by publishing MQTT
messages to MQTT topics. You can find the Tree MQTT service program in
the chapter14/tree_mqtt_service folder, and it contains the following files:

README.md: A full list of MQTT topics and message formats for
controlling your IoTree.



main.py: This is the program's main entry point.
config.py: Program configuration.
apa102.py: This is an exact copy of
the chapter14/tree_api_service/apa102.py. file
servo.py: This is an exact copy of
the chapter14/tree_api_service/servo.py file.
mqtt_listener_client.py: This is a class that connects to an MQTT broker
and subscribes to a topic that will receive messages to control the
APA102 and servo. When MQTT messages are received, they are
turned into a PubSub message and published using the PyPubSub library,
which we discussed in Chapter 12, Advanced IoT Programming Concepts
- Threads, AsyncIO, and Event Loops.
apa102_controller.py: This code receives PubSub messages sent
by mqtt_listener_client.py and updates the APA102 LED strip as
appropriate.
servo_controller.py: This code receives PubSub messages sent
by mqtt_listener_client.py and controls the servo.

A diagram depicting the Tree MQTT service program architecture is shown
in Figure 14.5:



Figure 14.5 – Tree MQTT service architecture block diagram

Here is the high-level operation of the Tree MQTT service for the MQTT
publication depicted by the dotted line in the preceding diagram:

1. A red blue message is published on to the tree/lights/pattern topic at #1.
2. The message is received by the Paho-MQTT client at #2. The topic and

message is parsed in the on_message() method in mqtt_listener_client.py and
mapped into a local PubSub topic pattern using
the MQTT_TO_PUBSUB_TOPIC_MAPPINGS mapping dictionary found in config.py.



3. The mapped message and parsed data are dispatched using the PyPubSub
library at #3.

4. The PyPubSub subscription in apa102_controller.py receives the pattern topic
and its payload data at #4 

5. apa102_controller.py handles the message and data at #5 and calls the
appropriate methods on an APA102 instance (defined in apa102.py) that
directly interfaces and updates the physical APA102 LED strip with the
repeating pattern of red and blue.

In case you are wondering, the decision to use PyPubSub and re-dispatch
MQTT messages in mqtt_listener_client.py was a design decision based on my
personal preferences to decouple MQTT-related code and hardware control-
related code, with the goal of making the application easier to read and
maintain. An alternative – and equally valid – approach could have been to
use apa102.py and servo.py within mqtt_listener_client.py in direct response to the
MQTT messages received.

Now that we have an understanding of how our Tree MQTT service works,
before we can run our Tree MQTT service, first we need to check its
configuration. We'll do that next.

Configuring the Tree MQTT service

The Tree MQTT service configuration is found in
the chapter14/tree_mqtt_service/config.py file. Similar to the Tree API service,
they mostly relate to the configuration of the APA102 and the servo. You
will also find this file and its configuration options well commented.

The default configuration will be adequate for running an example locally on
your Raspberry Pi; however, just as we did for the Tree API service
configuration, please check and update the APA102_NUM_LEDS = 60 parameter as
appropriate.

If you also needed to change any of the APA102_DEFAULT_CONTRAST,
SERVO_SWEEP_COUNT, or SERVO_SWEEP_DEGREES parameters while running the Tree API
example, please also update these values now for the MQTT example.



Once you have made any necessary changes to the configuration, we will
proceed and run our Tree MQTT service program and publish MQTT
messages to make our IoTree work.

Running the Tree MQTT service program

It's now time to run the Tree MQTT service program and publish MQTT
messages that will control our IoTree. Here are the steps to run and test our
Tree MQTT service:

1. We must have the Mosquitto MQTT broker service installed and
running on our Raspberry Pi, plus the Mosquitto MQTT clients tools.
Please refer to Chapter 4, Networking with MQTT, Python, and the
Mosquitto MQTT Broker, if you need to check your installation.

2. Change into the chapter14/tree_mqtt_service folder and start
the main.py script, as shown:

# Terminal 1

(venv) $ cd tree_mqtt_service

(venv) $ python main.py

INFO:root:Connecting to MQTT Broker localhost:1883

INFO:MQTTListener:Connected to MQTT Broker

3. Next, open a second terminal and send an MQTT message using the
following command:

# Terminal 2

$ mosquitto_pub -h "localhost" -t "tree/lights/pattern" -m "red blue black"

The LED strip will light up with the repeating color pattern – red,
blue, black (black means that the LED is off).

Try experimenting with the --retain or -r retained message option to mosquirro_pub. If you
publish a retained message, it gets re-delivered to your Tree MQTT services when it
connects to the MQTT broker and subscribes to the tree/# topic. This provides a way for
your IoTree to restore its last state in between restarts. 

4. Now, run the following command in Terminal 2 to make the LED strip
animate:

# Terminal 2

$ mosquitto_pub -h "localhost" -t "tree/lights/animation" -m "left"



5. To clear or reset the LED strip, run the following command, again
in Terminal 2:

# Terminal 2

$ mosquitto_pub -h "localhost" -t "tree/lights/clear" -m ""

In this example (and also the next one in step 6), we don't have any message content;
however, we still need to pass an empty message with the -m "" option (or, alternatively, -
n); otherwise, mosquitto_pub will abort.

6. Finally, try the following to sweep the servo:

# Terminal 2

$ mosquitto_pub -h "localhost" -t "tree/servo/sweep" -m ""

The servo will sweep back and forth according to the values set
for SERVO_SWEEP_COUNT or SERVO_SWEEP_DEGREES in
chapter14/tree_mqtt_service/config.py.

You will find the full set of MQTT topics and message formats that are recognized by the
Tree MQTT service, complete with mosquitto_pub examples, in
the chapter14/tree_mqtt_service/README.md file.

Similar to our RESTful API example, our MQTT example provides the
minimum functionality that we need for this chapter but does provide a basic
framework that you can expand on for your own future projects, or if you
extend your IoTree's features.

Now that we have run and seen how to control our IoTree's lights and servo
with MQTT, let's look at an integration service that we can use to couple our
Tree MQTT service with dweet.io.

Integrating the IoTree with dweet.io
The dweet integration service, found in the chatper14/dweet_integration_service
folder, is a Python-based integration service that receives dweets and re-
publishes them as messages to MQTT topics. This service provides us with a
simple approach to integrate a service such as IFTTT with our Tree MQTT
service program.

The dweet integration service is made up of the following files:



main.py: The main program entry point.
config.py: The configuration parameters.
thing_name.txt: Where your thing name is saved. This file will be created
when you first start the program.
dweet_listener.py: The core program code.

The core of our dweet service is found in the dweet_listener.py file. If you
inspect this file, you will notice that it is almost identical to the
dweet_led.py file covered in both Chapter 2, Getting Started with Python and
IoT, and Chapter 13, IoT Visualization and Automation Platforms (except it's
now wrapped as a Python class).

The core difference is found in the process_dweet() method, shown at line (1)
in the following code, where instead of directly controlling a LED, we
instead intercept the dweet and then re-publish it to MQTT topics:

def process_dweet(self, dweet):        # (1)

   # ...Truncated...

   # command is "<action> <data1> <data2> ... <dataN>"

   command = dweet['command'].strip()

   # ...Truncated...

   # elements (List) <action>,<data1>,<data2>,...,<dataN>

   elements = command.split(" ")

   action = elements[0].lower()

   data = " ".join(elements[1:])

   self.publish_mqtt(action, data)     # (2)

The publish_mqtt() method, shown at line (2) in the preceding code and at line
(3) in the following code, then turns our parsed command string into an
MQTT topic based on the ACTION_TOPIC_MAPPINGS setting found in
chapter14/dweet_mqtt_service/config.py and publishes the message:

    def publish_mqtt(self, action, data):                       # (3)

        if action in self.action_topic_mappings:

            # Map Action into MQTT Topic

            # (Eg mode --> tree/lights/mode). 

            # See config.py for mappings.

            topic = self.action_topic_mappings[action]

            retain = topic in self.mqtt_topic_retain_message    # (4)

            # ... truncated ...

            publish.single(topic, data, qos=0,                  # (5)

                          client_id=self.mqtt_client_id, 

                          retain=retain, hostname=self.mqtt_host, 

                          port=self.mqtt_port)



    # ... truncated ...

Notice, at line (5), that we are using a Paho-MQTT publish.single()
convenience method, rather that than the fully fledged MQTT client
approach we used in Chapter 4, Networking with MQTT, Python, and the
Mosquitto MQTT Broker (and that was also used in the Tree MQTT service
program).

At the moment, I just want to point out line (4), where we set the retain
variable (also notice its use in publish.single()). We will discuss this message
retention more in the following section when we discuss the service
configuration file.

A diagram depicting the Tree service program architecture is shown
in Figure 14.6:

Figure 14.6 – dweet integration service architecture block diagram

Here is the high-level operation of the dweet integration service for the
request shown by the blue dotted line in the preceding diagram:

1. A dweet is created at #1.
2. dweet_listener.py receives the dweet at #2 and parses the data contained

in the command parameter. The action contained within the commend is
mapped into an MQTT topic using the ACTION_TOPIC_MAPPINGS mapping
dictionary found in config.py.



3. A message is published to the MQTT broker to the mapped MQTT
topic at #3. The message's retained flag is set according to
the TOPIC_RETAIN_MESSAGE mapping dictionary found in config.py.

After the publication of the MQTT message, if your Tree MQTT service is
running and connected to the same MQTT broker, it will receive the MQTT
message and update your IoTree accordingly.

Now that we have an understanding of how our dweet integration service
works, before we can run our dweet integration service, first we need to
check its configuration. We'll do that next.

Configuring the Tree MQTT service

The dweet integration service configuration is found in
the chapter14/dweet_integration_service/config.py file.  There are a number of
configuration options relating to how the service works, and the defaults will
be adequate for running this service locally on your Raspberry Pi where you
also have your Mosquitto MQTT broker running. The configuration
parameters are well commented in this file; however, I will make mention of
the ACTION_TOPIC_MAPPINGS and TOPIC_RETAIN_MESSAGE parameters:

ACTION_TOPIC_MAPPINGS = {

    "clear": "tree/lights/clear",

    "push": "tree/lights/push",

    ... truncated ...

}

The dweet integration service maps dweeted commands into MQTT topics.
It's the ACTION_TOPIC_MAPPINGS configuration parameter that determines how
commands are mapped into MQTT topics. We'll discuss this idea of
commands in the next section.

The MQTT topics mapped and used by the dweet integration service must match those
used by a Tree MQTT service. The default configurations for each service use the same
topics.

The TOPIC_RETAIN_MESSAGE configuration shown in the following code
determines which MQTT topics will have their message's retained flag set.



It's this configuration (True or False) that is used to set the retained parameter
on single.publish(), as we pointed out in the previous section:

TOPIC_RETAIN_MESSAGE = {

    "tree/lights/clear": False,

    "tree/lights/animation": True,

    ... truncated ...

}

Now that we have discussed the configuration file, let's start our dweet
integration service and send it dweets that will control our IoTree.

Running the dweet integration service program

Our dweet integration service works by receiving dweets in a predefined
format and turns them into MQTT topics and messages as per the
configuration parameters we discussed in the previous section. We'll discuss
this dweet format shortly as we run and test the dweet integration
service. Here are the steps we need to follow:

1. Firstly, make sure you have the Tree MQTT service program from the
previous section running in a terminal. It is the Tree MQTT service that
will receive and process the MQTT messages published by the dweet
integration service.

2. Next, navigate to the chapter14/dweet_integration_service folder in a new
terminal and start the main.py program, as shown (remember your thing
name will be different):

(venv) $ cd dweet_service

(venv) $ python main.py

INFO:DweetListener:Created new thing name ab5f2504

INFO:DweetListener:Dweet Listener initialized. Publish command dweets to 

'https://dweet.io/dweet/for/ab5f2504?command=...'

3. Copy and paste the following URLs into a web browser to control your
IoTree. Use the thing name shown in your output in place of the
<thing_name> text:

https://dweet.io/dweet/for/<thing_name>?

command=pattern%20red%20blue%20black

https://dweet.io/dweet/for/<thing_name>?command=animation%20left



https://dweet.io/dweet/for/<thing_name>?command=speed%2010

https://dweet.io/dweet/for/<thing_name>?command=clear

https://dweet.io/dweet/for/<thing_name>?command=sweep

It may take a few moments between calling one of these URLs and it being received by
your dweet integration service.

As you will see in the command parameter in the preceding URLs, the format of
our dweets is <action> <data1> <data2> <dataN>.

You will find the full set of dweet command strings recognized by the default
configuration in config.py, complete with example URLs, in
the chapter14/dweet_integration_service/README.md file.

Well done! We've just created a simple integration service using dweet.io
and MQTT and learned a simple and non-invasive approach that allows us to
control our tree over the internet that did not require you to make any
network or firewall configurations.

When designing an IoT project and considering how data is moved around
the internet and networks, it's common to find that you need to design and
build some form of integration to bridge systems that are built on different
transport mechanisms. Our example in this section illustrates a scenario
where we bridge an MQTT service (our IoTree MQTT service) with a
polling-based RESTful API service (dweet.io). While every integration has
its own requirements, hopefully this example has provided you with a rough
roadmap and approach that you can adapt and build upon in the future when
you encounter these scenarios.

Now that we have our dweet integration service running and have tested that
it's working, let's see how we can use it together with the IFTTT platform.

Integrating with email and Google
Assistant via IFTTT



Now comes the really fun part – let's make our tree controllable over the
internet. As a spoiler, I'm not going to hold your hand through this
integration because the core concepts on using dweet.io and IFTTT together
were explained in detail in Chapter 13, IoT Visualization and Automation
Platforms. In particular, we learned how to integrate our Raspberry Pi with
IFTTT and email to control a LED.

What I will do, however, is give you screenshots of my IFTTT configuration
so that you can verify what you set up. Plus, as a bonus, I'll also give you a
tip and screenshot on how to integrate with Google Assistant so that you can
voice-control your IoTree!

At the time of writing, IFTTT has a Google Assistant service that can take arbitrary
spoken text (in IFTTT lingo, an ingredient). I did check out Alexa integration but
unfortunately, the Alexa IFTTT service could not take arbitrary input and so was not
compatible with our example. 

First, we will look at a few pointers on how to integrate our IoTree with
email.

Integration with email

The process for integrating with email or Twitter is the same as what we
covered in Chapter 13, IoT Visualization and Automation Platforms, with the
following changes:

1. Rather than using LED as the hashtag (the Complete Trigger Fields
Page step in IFTTT), use TREE. This way, your email subject can be
something such as #TREE pattern red blue or #TREE animation blink.

2. When configuring the That webhook service, you need to use the dweet
URL printed on the terminal previously when you ran the dweet
integration service. An example from my configuration is shown in the
following figure. Remember the thing name in your URL will be
different:



Figure 14.7 – Webhook configuration

3. Once you have completed setting up your IFTTT Applet, try emailing
trigger@applet.ifttt.com with the following subject:

#TREE pattern red blue black

#TREE animation left

A few moments after emailing or tweeting the #TREE pattern red blue
black command, your tree's lights will change to these colors in a repeating
pattern. Similarly, a few moments after emailing or tweeting #TREE animation
left, your tree lights will start animating.

Remember, you will need to have both the Tree MQTT service and dweet integration
service running in terminals for this example to work. It may also take a few moments
after sending an email or posting a tweet before your IoTree changes.

Once you have been able to control your IoTree with email, next we'll look
at the steps necessary to add voice control using Google Assistant.



Integration with Google Assistant

Let's make our IoTree voice-controllable using Google Assistant.

Google Assistant comes in many other forms, including Google Home, Google Nest, and
Google Mini. These products will also work with the IFTTT Google Assistant integration
and your IoTree as long as they are signed in to the same Google Account you use with
IFTTT.

To create our integration, we need to link your Google account with the
IFTTT Google Assistant service and call a dweet.io URL when it receives
commands. Here are the high-level steps to follow:

1. Log in to your IFTTT account.
2. Create a new Applet.
3. For the This part of the Applet, use Google Assistant Service.
4. Next, you will be asked to connect and allow IFTTT to use your Google

account. Follow the on-screen instructions to connect IFTTT and your
Google account.

5. Now it's time to select the Google Assistant trigger. Choose Say a
phrase with a text ingredient. A sample trigger configuration is shown
in Figure 14.8:



Figure 14.8 – Google Assistant trigger example

It's the $ sign in Tree $ shown in the preceding screenshot that gets
turned into an IFTTT ingredient that we will use with our webhook
service (which we'll see in a later step).

With this trigger configuration, you can say commands such as the
following to control your IoTree:

"Tree pattern red blue black"
"Set tree animation blink"
"Tree clear"



6. It's time to configure the That part of the IFTTT Applet. Search for and
select WebHook.

7. Configuration of the webhook service is the same as the process we
covered previously under the Integration with email heading in step 2,
and as shown in Figure 14.7.

8. Continue and complete the creation of your IFTTT Applet.
9. Ask your Google Assistant the following commands:

"Tree pattern red blue black"
"Tree animation blink"
"Tree clear"
"Tree sweep" (or "tree jingle")
Or any other command documented in the
chapter14/dweet_integration_service/README.md file

Remember, it may take a moment after Google Assistant acknowledges your request for
your IoTree to start changing.

Here is a screenshot of my Google Assistant dialog on my iPhone:



Figure 14.9 – Google Assistant dialog to control the IoTree

If the integration is working, Google Assistant will respond with "Ok,
Updating Tree"(or whatever text you used at step 5), and moments later,
your IoTree will respond.

The important thing to remember is that we must speak commands exactly as they are
interpreted by the dweet integration service – for example, as they would appear in the
command parameter to a dweet URL, such as https://dweet.io/dweet/for/<thing_name>?
command=pattern red blue black.

Remember to prefix them with the word "Tree" (or "Set Tree"). This text is
what triggers your IFTTT Applet. Just speaking a command alone will not
trigger your Applet.



If you use an Android phone or the Google Assistant app for iOS, you will be able to see
how your spoken words are turned into textual commands, which can help you
troubleshoot commands that are not working or are misunderstood.

You've just learned how to create three IFTTT integrations to control your
IoTree using email and your voice, and you can easily adapt the same basic
ideas and processes to control and automate other electronic circuits we've
seen in this book.

Furthermore, as we discussed in Chapter 13, IoT Visualization and Automation
Platforms, IFTTT provides many triggers and actions that you can combine
to build automation workflow Applets. Between this chapter and the
previous one, you have now created several Applets, so I have every
confidence that you'll be able to explore the IFTTT ecosystem and create all
sorts of interesting Applets that work together with your Raspberry Pi.

Before we conclude this chapter (and the book!), I want to leave you with a
few ideas and experiments you can conduct to further expand your IoTree's
capabilities.

Ideas and suggestions to extend
your IoTree
The code and electronics we have used throughout this chapter have given us
a foundation that we can build upon. This might be to extend your IoTree, or
as the basis for other IoT projects.

Here are a few suggestions you can try:

Add and integrate a PIR sensor that plays an RTTTL tune whenever
anyone walks past your IoTree. After all, what electronic Christmas
gadget is complete unless it drives everyone crazy by playing tunes
over and over and over and over...
Add and integrate an RGB LED to the top of the tree (maybe inside a
transparent star), or use RGB LEDs in place of – or together with – the
APA102 LED strip.



Build multiple IoTrees. If you use MQTT, they'll synchronize!
Try to build a WebSocket integration and an accompanying web app.
The current dweet Google Assistant integration requires you to speak
commands exactly. Can you create an upgrade that is a little fuzzier –
 that is, that can parse spoken text and work out what command
is spoken?
We used dweet.io (together with MQTT) in our IFTTT examples, so we
did not have to worry about firewall configurations. You might want to
investigate opening up a firewall port at your place or investigate
services such as LocalTunnels (https://localtunnel.github.io/www) or ngrok
(https://ngrok.com). These approaches will allow you to use IFTTT
webhooks to directly communicate with your IoTree's RESTful API.
However, do remember that our RESTful API examples are not secured
– they are not using HTTPS and there is no authentication mechanism
such as a username and password to restrict access to the APIs, so you
might want to also research how to secure a Flask-based API and
perform these upgrades first.

Obviously, these are just a few of my suggestions. We've covered many
circuits during our journey, so use your imagination and see what you come
up with – and have fun!

Summary
Congratulations! We have now reached the end of the chapter and the end of
the book!

In this chapter, we ran through the electronics and tested programs that
control those electronics that create the basis of an IoT Christmas tree. We've
seen a RESTful API that can control our IoTree's lights and servo, as well as
a comparable MQTT implementation. We also looked at a dweet.io-to-
MQTT integration service, which we coupled with IFTTT to provide a
mechanism to control out IoTree using email and Google Assistant. 

Throughout our journey in this book, we have covered many concepts and
technologies, including a variety of networking techniques, electronic and

https://localtunnel.github.io/www
https://ngrok.com/


interfacing fundamentals, and a range of practical examples using sensors
and actuators with your Raspberry Pi. We have also looked at automation
and visualization platforms and finished off, in this chapter, with one
example of tying our learnings together.

I had a couple of core intentions in mind when I wrote this book. One of my
intentions was to share and explain the reasons behind how we connect
sensors and actuators to a Raspberry Pi, and why we accompany them with
additional components such as resistors to create voltage dividers. My
second core intention was to provide you with a variety of networking
techniques and options that are applicable to IoT projects.

I believe that the software and hardware fundamentals, together
with practical examples you have learned throughout our journey, will
provide you with many skills and insights to not only help you design and
build your own complex IoT projects but to also understand, at a
fundamental level, how existing IoT projects work at a software, networking
and electronics level.

It is my sincere hope that you have enjoyed this book, learned a lot, and
picked up many practical tips along the way! All the best on your IoT
journey, and I hope you create some amazing things!

Questions
As we conclude, here is a list of questions for you to test your knowledge of
this chapter's material. You will find the answers in the Assessments section
of the Appendix:

1. Why, in our MQTT service example, did we use PyPubSub to re-dispatch
MQTT messages? 

2. Why is using the Google Assistant app on a phone (or tablet) useful
during development when integrating with or debugging an IFTTT
Google Assistant Applet?



3. You are working on an existing weather monitoring project that uses
MQTT as its network transport layer to connect many distributed
devices. You have been asked to integrate the application with an
IFTTT service. How do you do this?

4. You want to build multiple IoTrees and have them all work together in
unison. What are two approaches you can take to achieve this outcome?

5. Why did we use the free dweet.io service in this chapter? Would you use
this approach in a commercial IoT project?

6. We want to test a RESTful API service from the command line. What
command-line tool can we use?

7. What feature of MQTT can you use to have IoTrees initialize
automatically when their Raspberry Pis are powered on or rebooted?

8. Further to Question 7, what are some of the considerations you will
need to make regarding the Mosquitto MQTT broker setup and
deployments to achieve this outcome?

http://dweet.io/


Assessments



Chapter 1
1. To keep your project-specific Python packages and dependencies

isolated from other projects and the system-level Python packages.
2. No. You can always regenerate a virtual environment and reinstall

packages.
3. To keep a list of all the Python packages (and versions) that your

Python projects rely on. Having a maintained requirements.txt file
allows you to reinstall all packages easily with the command pip install
-r requirements.txt.

4. Make sure you are using the absolute path to the Python interpreter
that is in the bin folder of your virtual environment.

5. It activates a virtual environment so that all users of Python and pip are
sandboxed to the virtual environment.

6. deactivate. If you type exit (and we all do it sometimes!), it exits the
Terminal window or closes your remote SSH session! Grrrrr.

7. Yes, just change into the projects folder and activate the virtual
environment.

8. Python IDLE, but remember you need to use python -m idlelib.idle
[filename] & in a virtual environment.

9. Check that the I2C interface has been enabled in Raspbian.



Chapter 2
1. Sort by answer number so that you do not damage other components

or the resistor... unless you understand how the different values will
affect the electronic circuit and it's safe to do so.

2. False. GPIO Zero is a wrapper on top of other GPIO libraries. It's
designed to be easy to use for beginners by hiding away lower-level
GPIO interfacing details.

3. False. In many scenarios, you are better off using mature higher-level
packages as they will help speed up development. The Python API
documentation also recommends this approach.

4. No. An LED has positive (anode) and negative (cathode) terminals
(legs) and must be connected the correct way around.

5. There's a chance that there is a mismatch between the devices' time
zone handling.

6. signal.pause()



Chapter 3
1. We can create and configure an instance of RequestParser. We use this

instance in our controller's handler methods such as .get() or .post() to
validate the client's request.

2. WebSockets – a client and server built using Web Sockets can initiate a
request to one another in either direction. This is in contrast to a
RESTful API service where only the client can initiate a request to the
server.

3. Flask-SocketIO does not include an in-built validation class like Flask-
RESTful. You have to perform input validation manually.
Alternatively, you could also find a suitable third-party Python module
to use from PyPi.org.

4. The templates folder is the default location where the Flask framework
looks for template files. It's in this location where we store our HTML
pages and templates.

5. We should initialize event listeners and the web page content in
the document ready function, which is called once the web page has
been completely loaded.

6. The command is curl. It is installed by default on most Unix-based
operating systems.

7. Changing the value property changes the PWM duty cycle for the
LED. We visualize this as changing the brightness of the LED.



Chapter 4
1. MQTT, or Message Queue Telemetry Protocol, is a lightweight

messaging protocol frequently used in distributed IoT networks.
2. Check the QoS levels, making sure they are either level 1 or 2.
3. A Will message will be published on behalf of a client if that client

abruptly disconnects from the broker without cleanly closing the
connection first.

4. Both the published message and subscribing clients must use at least
QoS level 1, which ensures messages are delivered one or more times.

5. Ideally, nothing should need to change in your Python code other than
perhaps the broker host and port because MQTT is an open standard.
The proviso is that the new broker is configured similarly to the broker
being replaced – for example, both brokers are configured similarly to
provide message retention or durable connection features to clients.

6. You should subscribe to topics in an on successful connection-type
handler. This way, if the client loses its broker connection, it can
automatically reestablish topic subscriptions when it reconnects.



Chapter 5
1. SPI (Serial Peripheral Interface Circuit). LED strips and matrices

are common examples.
2. You can refer to the device's official datasheet, or use the command-

line tool i2cdetect, which lists the addresses of all connected I2C
devices.

3. Make sure you are using the correct pin numbering scheme expected
by the library, and/or make sure you have configured the library to use
the scheme you prefer if the library provides this option.

4. The driver library is not built upon PiGPIO and therefore does not
support remote GPIO.

5. False. All GPIO pins are rated for 3.3 volts. Connecting any voltage
higher than this can damage your Raspberry Pi.

6. The library you are using to drive the servo is most likely using
software PWM to generate the PWM signals for the servo. Software
PWM signals can be distorted when the Raspberry Pi's CPU gets busy.

7. If you are powering the servos from the 5-volt pin of your Raspberry
Pi, it'll indicate that you are drawing too much power, effectively
robbing the power from the Raspberry Pi. Ideally, the servos should be
powered from an external power source.



Chapter 6
1. Generally speaking, yes. It's safe to try because a higher resistance

results in a lower current in the circuit (Ohm's law) and 330Ω is
relatively close to the desired 200Ω resistor.

2. The higher resistance has resulted in less current to the point that there
is not enough current for the circuit to operate reliably.

3. The amount of power to be dissipated by the resistor exceeds the
resistor's power rating. In addition to using Ohm's law to determine a
resistor value, you also need to calculate the expected power
dissipation of the resistor and ensure that the resistor's power rating (in
watts) exceeds your calculated value.

4. 1 (one). An input GPIO pin connected to +3.3 volts is a logical high.
5. GPIO 21 is floating. It's not pulled up to +3.3 volts by a physical

resistor or via code using a function call such as pi.set_pull_up_down(21,
pigpio.PUD_UP).

6. You must use a logic level converter. This could be a simple resistor-
based voltage divider, a dedicated logic level converter IC or module,
or any other form that can appropriately shift down 5 volts to 3.3 volts.

7. False. A resistor voltage divider can only step down a voltage.
However, remember that it may be possible to drive a 5-volt logic
device using 3.3 volts as long as the 5-volt device registers 3.3 volts as
a logical high.



Chapter 7
1. MOSFETs are voltage-controlled components, while BJTs are current-

controlled components.
2. You do not have a pull-down resistor on the MOSFET's gate leg, so it's

left floating. The MOSFET discharges slowly and this is reflected as
the motor is spinning down. Using a pull-down resistor ensures the
MOSFET discharges promptly and becomes off.

3. (a) Make sure the G, S, and D legs are connected correctly because
different package styles (for example, T092 versus TP220) have their
legs ordered differently.
(b) You also want to make sure that the MOSFET is logic-level
compatible so that it can be controlled using a 3.3-volt voltage source.
(c) Ensure that the voltage divider created between the pull-down
resistor and the current limiting resistor allows >~3 volts into the
MOSFET's gate leg.

4. Optocouplers and relays electrically isolate the input and output sides
of a circuit. Transistors are in-circuit, and while they allow a low-
current device to control a larger current device, both devices are still
both electrically connected (for example, you will see a common
ground connection).

5. Active low is where you make a GPIO low to turn on or activate the
connected circuit. Active high is the opposite, in that we make the
GPIO pin high to activate the connected circuit.

6. Code activated pull-down only becomes pull-down when the code is
run, so the MOSFET gate is basically left floating until the code is run.

7. The stall current is the current used by the motor when its staff has
been, well, stalled – for example, forcefully stopped from turning. This
is the maximum current that a motor will draw.

8. There is no difference – they are two terms used interchangeably to
describe the current a motor uses when it is spinning freely with no
load attached to the motor's shaft.



Chapter 8
1. Check that your power supply can deliver enough current (and

voltage) to your LED strip. Current requirements increase in
proportion with the number of LEDs you want to illuminate, and the
color and brightness they are set to. An insufficient current can mean
that the internal red/green/blue LEDs are not illuminated correctly and
thus the colors are not as you expected.

2. The absence of a Slave Select or Client Enable pin means that the
APA102 takes full control of the SPI interface. This means that you
cannot connect more than one SPI slave to an SPI pin (unless you
employ additional electronics).

3. First, check that your logic level converter is connected correctly.
Secondly, it's possible that the logic level converter cannot convert
logic levels fast enough to keep up with the SPI interface. Try
lowering the SPI bus speed.

4. We use the PIL (Python Imaging Library) to create an in-memory
image representing what we want to display. We then send this image
to the OLED display for rendering.

5. RTTTL means Ring Tone Text Transfer Language, which is a ring-
tone music format created by Nokia.



Chapter 9
1. The DHT22 is a more accurate sensor, and it is capable of sensing a

greater range of temperatures and humanities. 
2. The external pull-up resistor is optional because our Raspberry Pi can

use its internal embedded pull-up resistor.

3. An LDR is a light-sensitive resistor. When used as part of a voltage-
divider circuit, we turn the varying resistance into a varying voltage.
This voltage can then be detected by an analog-to-
digital converter such as the ADS1115, which is connected to your
Raspberry Pi.

4. Try varying the resistance of the fixed resistor in the voltage-divider
circuit. Try higher-value resistances to make the LDR more sensitive
in darker conditions. Try lower-resistance values to make the LDR
more sensitive to brighter conditions.

5. No two LDRs are identical when it comes to the resistances they
measure. If you swap out an LDR in a circuit, re-calibrate the code just
to be sure.

6. Water conducts electricity. It acts as a resistor between the two probe
wires. This resistance is converted to a voltage by the voltage divider,
and this is detectable by the ADS1115 ADC.



Chapter 10
1. We typically find default reference pulse widths of 1 ms for left, and 2

ms for rights used for the servos. In reality, the servos may need
slightly adjusted pulse widths to reach their extreme rotation positions.

2. You are applying a pulse width that is trying to rotate your servo
beyond its physical limits.

3. An H-bridge allows us to also change the rotation of a motor and apply
a brake to quickly stop the motor spinning.

4. Many factors affect the reliability of braking, including the IC and
your motor. You can adopt PWM-style braking as an alternative
braking technique.

5. Vibrating but not turning is often the symptom of a mismatch between
the coil energizing order and the coil stepping sequence. You need to
identify and ensure the stepper motor's coils are connected correctly
and match the stepping sequence. Consulting your stepper motor's
datasheet is the best place to start.

6. The L293D has a voltage drop of around 2 volts, so your motor is only
getting around 3 volts. To compensate for this voltage drop, you would
need a power source of 7 volts.

7. No. The GPIO pins only supply 3.3 volts. While this might be just
enough to rotate a 5-volt stepper motor, the current requirements of a
stepper motor will exceed the safe limits of the Raspberry Pi GPIO
pins. 



Chapter 11
1. No. A passive infrared (PIR) sensor can only detect abstract

movement. You will need an active-type infrared sensor or a device
like a thermal camera (and a lot more complex code) to extract richer
movement information.

2. An ultrasonic sensor measures the round-trip timing of ultrasonic
pulses, which is then used to calculate distance. Factors that affect the
ultrasonic pulse timing or the speed-of-sound constant used therefore
affect the calculated distance. Some examples include temperature
since this affects the speed of sound, the material of the detected object
(for example, does it absorb sound?), the size of the object, and its
angle relative to the sensor.

3. Both latching and non-latching Hall effect sensors output
a digital signal – their output pin is either HIGH or LOW. In contrast,
ratiometric Hall effect sensors output an analog signal (varying
voltage) relative to how close they are to a magnetic field.

4. The callback_handler function will be called whenever GPIO transitions
to either a HIGH or LOW state.

5. So that the relative voltage drop across the resistor that sits between
the 5-volt source and the voltage-divider output (between the two
resistors) is 3.3 volts, that is, 5 volts * 2kΩ/(1kΩ + 2kΩ) = ~3.3 volts.
If you reversed the resistor values in the circuit, the voltage-divider
output would be ~1.7 volts, that is, 5 volts * 1kΩ/(1kΩ + 2kΩ) = ~1.7
volts.

6. After consulting the datasheet for the HC-SR501 PIR sensor, we learn
that its output pin always works at 3.3 volts even though it's powered
from 5 volts, thus we did not need a voltage divider. (Note that, in
practice, we ideally would also confirm this by our measurement.)



Chapter 12 
1. A publish-subscribe approach promotes a highly decoupled approach

to programming. This can be beneficial when you have many
components (for example, sensors) publishing data that simply needs
to be consumed elsewhere in your program.

2. GIL stands for Global Interpreter Lock. It's a design aspect of the
Python programming language that means only one thread ever has
access to the Python interpreter at a time.

3. A pure event loop (for example, one long while loop) can get complex
as your program grows. The need for many state variables and non-
trivial and intervening conditional tests (for example, if statements)
can make the program logic hard to follow and debug.

4. No. Every approach has its purpose. Event loops are fine when they
are small and focused. It's only when they become large and are
performing multiple actions that they become complex.

5. When you are programming with threads, calling join() on another
thread joins that thread to your current thread. Your current thread then
blocks until all joined threads run methods complete. This is a simple
way of synchronizing the completion of multiple threads.

6. Perhaps you are using a sleep statement (from the time library), such
as sleep(duration), which blocks for the full duration. Try using the
approach in the following example, which will allow your program to
remain responsive to a change in the value of duration:

duration = 1   # 1 second

timer = 0

while timer < duration:

    timer += 0.01

    sleep(0.01)

7. No approach is superior. There is always more than one way to reach
your programming goal in Python. The best approach, or combination
of approaches, all depends on your project and what you are trying to
achieve. The best approach can also be the one that is best for you
based on your personal preferences and preferred programming style.



Chapter 13
1. We used different temperatures to create a buffer so that we would not

generate multiple triggers (and multiple emails) if the temperature
hovered around a single temperature value.

2. Using an intermediary meant we did not need to worry about a
firewall, port forwarding, and other configurations necessary to expose
your Raspberry Pi to the public internet.

3. IFTTT is more consumer-focused, while Zapper is more business-
focused in terms of the integrations it provides. Zapper will also allow
you to create a more complex workflow, trigger, and action scenarios.

4. No. ThingSpeak only consumes data to display on a dashboard. Some
platforms, such as ThingBoard, will allow you to send data back to a
device for the purposes of controlling that device.

5. There is a maximum of three JSON properties available – Value1, Value2,
and Value3.

6. From ease and speed of development perspectives, IFTTT or Zapper
would be a good choice, but you could certainly use AWS or one of
the other major IoT platforms, or even Home Assistant.



Chapter 14
1. The use of PyPubSub was a design decision to decouple MQTT-related

code and logic from hardware control code and logic, with the goal of
making the code cleaner and easier to maintain.

2. The commands you speak when using the Google Assistant app are
shown on your device as text, so it's easy to see how Google Assistant
heard your spoken commands, and what was sent as textual commands
to your IFTTT Applet.

3. You will need to build an integration service that marshals data
between MQTT and the RESTful APIs (or, alternatively, identify a
thirty-party service that does this – for example, check out https://io.ad
afruit.com and their IFTTT service). IFTTT offers RESTful webhooks
as an option to build custom integrations, however, it does not offer an
MQTT option. 

4. One option is to use MQTT, just like the example we covered in this
chapter. If you connect multiple IoTrees using MQTT to a central
MQTT broker, they all receive instructions together. A second option
could be to build a WebSockets-based service and application (we
covered this approach in Chapter 3, Networking with RESTful APIs and
Web Sockets Using Flask).

5. We used the free dweet.io service for practical convenience so what we
did not have to worry about firewalls, port forwarding, and router
configurations at your place (just in case this is something you are not
experienced with). The free dweet.io service offers no security or
privacy, so it is undesirable for many projects. If you like the idea of dw
eet.io, there is dweetpro.io, a paid alternative that offers security and
many other features that are not available in the free version.

6. CURL is a popular command-line tool that can be used to test RESTful
APIs. Postman (getpostman.com) is a popular GUI tool that can also be
used for the same purpose.

7. If you use the retained message features of the MQTT broker, each
IoTree will receive the last message (for example, what color pattern to
show) when it connects and therefore can initialize itself. We covered

https://io.adafruit.com/
http://dweet.io/
http://dweet.io/
http://dweet.io/
https://dweetpro.io/
https://getpostman.com/


retained messages in Chapter 4, Networking with MQTT, Python, and
the Mosquitto MQTT Broker.

8. If your MQTT broker is running on the same Raspberry Pi as an
IoTree and you restart this Raspberry Pi, all retained messages will be
lost unless the Mosquitto MQTT broker has persistence enabled in its
configuration. (Our configuration from Chapter 4, Networking with
MQTT, Python, and the Mosquitto MQTT Broker,
ensured persistence is enabled).
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