

5: Arrays and Files Page 1

5 Arrays and Files

5.1 Objectives

After completing this lab, you will:

• Define and initialize arrays statically in the data segment

• Allocate memory dynamically on the heap

• Compute the memory addresses of array elements

• Write loops in MIPS assembly to traverse arrays

• Write system calls to open, read from, and write to files

5.2 Defining and Initializing Arrays Statically in the Data Segment

Unlike high-level programming languages, assembly language has no special notion for an array.
An array is just a block of memory. In fact, all data structures and objects that exist in a high-level
programming language are simply blocks of memory. The block of memory can be allocated
statically or dynamically, as will be explained shortly.

An array is a homogeneous data structure. It has the following properties:

1. All array elements must be of the same type and size.

2. Once an array is allocated, its size becomes fixed and cannot be changed.

3. The base address of an array is the address of the first element in the array.

4. The address of an element can be computed from the base address and the element index.

An array can be allocated and initialized statically in the data segment. This requires:

1. A label: for the array name.

2. A .type directive for the type and size of each array element.

3. A list of initial values, or a count of the number of elements

A data definition statement allocates memory in the data segment. It has the following syntax:

label: .type value [, value] . . .

Examples of data definition statements are shown below:

5: Arrays and Files Page 2

.data

arr1: .half 5, -1 # array of 2 half words initialized to 5, -1

arr2: .word 1:10 # array of 10 words, all initialized to 1

arr3: .space 20 # array of 20 bytes, uninitialized

str1: .ascii "This is a string"

str2: .asciiz "Null-terminated string"

In the above example, arr1 is an array of 2 half words, as indicated by the .half directive,

initialized to the values 5 and -1. arr2 is an array of 10 words, as indicated by the .word

directive, all initialized to 1. The 1:10 notation indicates that the value 1 is repeated 10 times.

arr3 is an array of 20 bytes. The .space directive allocates bytes without initializing them in

memory. The .ascii directive allocates memory for a string, which is an array of bytes. The

.asciiz directive does the same thing, but adds a NULL byte at the end of the string. In addition

to the above, the .byte directive is used to define bytes, the .float and .double directives are
used to define floating-point numbers.

Every program has three segments when it is loaded into memory by the operating system, as
shown in Figure 5.1. There is the text segment where the machine language instructions are stored,
the data segment where constants, variables and arrays are stored, and the stack segment that
provides an area that can be allocated and freed by functions. Every segment starts at a specific
address in memory. The data segment is divided into a static area and a dynamic area. The
dynamic area of the data segment is called the heap. Data definition statements allocate space for
variables and arrays in the static area.

Figure 5.1: The text, data, and stack segments of a program

If arrays are allocated in the static area, then one might ask: what is the address of each array? To

answer this question, the assembler constructs a symbol table that maps each label to a fixed
address. To see this table in the MARS simulator, select “Show Labels Window (symbol table)”
from the Settings menu. This will display the Labels window as shown in Figure 5.2. From this

figure, one can obtain the address of arr1 (0x10010000), of arr2 (0x10010004), of arr3

(0x1001002c), etc.

The la pseudo-instruction loads the address of a label into a register. For example, la $t0, arr3

loads the address of arr3 (0x1001002c) into register $t0. This is essential because the
programmer needs the address of an array to process its elements in memory.

Stack Segment

Heap Area

Static Area

Data Segment

0x00000000
Reserved

0x10000000

Text Segment

0x7fffffff

0x00400000

0x10040000

5: Arrays and Files Page 3

You can watch the values in the data segment window as shown in Figure 5.3. To watch ASCII
characters, click on the ASCII box in the data segment window as shown in Figure 5.4. Notice that

characters appear in reverse order within a word in Figure 5.4. If the lw instruction is used to load
four ASCII characters into a register, then the first character is loaded into the least significant byte
of a register. This is known as little-endian byte ordering. On the other hand, big-endian orders the
bytes within a word from the most-significant to the least-significant byte.

Figure 5.2: Labels (symbol table) window under MARS

Figure 5.3: Watching Values in hexadecimal in the Data Segment

Figure 5.4: Watching ASCII Characters in the Data Segment

5.3 Allocating Memory Dynamically on the Heap

Defining data in the static area of the data segment might not be convenient. Sometimes, a program
wants to allocate memory dynamically at runtime. One of the functions of the operating system is to
manage memory. During runtime, a program can make requests to the operating system to allocate
additional memory dynamically on the heap. The heap area is a part of the data segment (Figure

5.1), that can grow dynamically at runtime. The program makes a system call ($v0 = 9) to allocate

5: Arrays and Files Page 4

memory on the heap, where $a0 is the number of bytes to allocate. The system call returns the

address of the allocated memory in $v0. The following program allocates two blocks on the heap:

.text

 . . .

 li $a0, 100 # $a0 = number of bytes to allocate

 li $v0, 9 # system call 9

 syscall # allocate 100 bytes on the heap

 move $t0, $v0 # $t0 = address of first block

 li $a0, 200 # $a0 = number of bytes to allocate

 li $v0, 9 # system call 9

 syscall # allocate 200 bytes on the heap

 move $t1, $v0 # $t1 = address of second block

 . . .

5.4 Computing the Addresses of Array Elements

In a high-level programming language, arrays are indexed. Typically, array[0] is the first element

in the array, and array[i] is the element at index i. Because all array elements have the same

size, then address of array[i], denoted as &array[i] = &array + i × element_size.

In the above example, arr2 is defined as an array of words (.word directive). Since each word is 4

bytes, then &arr2[i] = &arr2 + i×4. The & is the address operator. Since the address of arr2

is given as 0x10010004 in Figure 6.2, then: &arr2[i] = 0x10010004 + i×4.

A two-dimensional array is stored linearly in memory, similar to a one-dimensional array. To define

matrix[Rows][Cols], one must allocate Rows × Cols elements in memory. For example, one
can define a matrix of 10 rows × 20 columns word elements, all initialized to zero, as follows:

matrix: .word 0:200 # 10 by 20 word elements initialized to 0

In most programming languages, a two-dimensional array is stored row-wise in memory: row 0,

row 1, row 2, … etc. This is known as row-major order. Then, address of matrix[i][j],

denoted as &matrix[i][j] becomes:

& matrix[i][j] = &matrix + (i×Cols + j) × element_size

If the number of columns is 20 and the element size is 4 bytes (.word), then:

&matrix[i][j] = &matrix + (i×20 + j) × 4

For example, to translate matrix[1][5] = 73 into MIPS assembly language, one must compute:

&matrix[1][5] = &matrix + (1×20+5)×4 = &matrix + 100.

la $t0, matrix # load address: $t0 = &matrix

li $t1, 73 # $t1 = 73

sw $t1, 100($t0) # matrix[1][5] = 73

5: Arrays and Files Page 5

 0 1 … j … 19

0 Each row has 20 word elements

1

…

i &matrix[i][j] = &matrix + (i×20 + j) × 4

…

9

Unlike a high-level programming language, address calculation is essential when programming in
assembly language. One must calculate the addresses of array elements precisely when processing
arrays in assembly language.

5.5 Writing Loops to Traverse Arrays

The following while loop searches an array of n integers linearly for a given target value:

int i=0;

while (arr[i]!=target && i<n) i = i+1;

Given that $a0 = &arr (address of arr), $a1 = n, and $a2 = target, the above loop is
translated into MIPS assembly code as follows:

 move $t0, $a0 # $t0 = address of arr

 li $t1, 0 # $t1 = index i = 0

while:

 lw $t2, 0($t0) # $t2 = arr[i]

 beq $t2, $a2, next # branch if (arr[i] == target) to next

 beq $t1, $a1, next # branch if (i == n) to next

 addi $t1, $t1, 1 # i = i+1

 sll $t3, $t1, 2 # $t3 = i×4

 add $t0, $a0, $t3 # $t0 = &arr + i×4 = &arr[i]

 j while # jump to while loop

next:

 . . .

To calculate the address of arr[i], the sll instruction shifts left i by 2 bits (computes i×4) and

then the add instruction computes &arr[i] = &arr + i×4. However, one can also point to the next

array element by incrementing the address in $t0 by 4, as shown below. Using a pointer to traverse
an array sequentially is generally faster than computing the address from the index.

5: Arrays and Files Page 6

while:

 lw $t2, 0($t0) # $t2 = arr[i]

 beq $t2, $a2, next # branch if (arr[i] == target) to next

 beq $t1, $a1, next # branch if (i == n) to next

 addi $t1, $t1, 1 # i = i+1

 addi $t0, $t0, 4 # $t0 = &arr[i]

 j while # jump to while loop

next:

 . . .

A second example about a 2-dimensional array is shown below:

High-Level Program MIPS Assembly Language Code

int M[10][5];

int i;

for (i=0; i<10; i++) {

 M[i][3] = i;

}

.data

 M: .word 0:50 # array of 50 words

&M[i][3] = &M + (i×5+3)×4 = &M + i×20 + 12

.text

 la $t0, M # $t0 = &M[0][0]

 li $t1, 0 # $t1 = i = 0

 li $t2, 10 # $t2 = 10

for:

 sll $t3, $t1, 4 # $t3 = i×16

 sll $t4, $t1, 2 # $t4 = i×4

 add $t5, $t3, $t4 # $t5 = i×20

 add $t5, $t0, $t5 # $t5 = &M + i×20

 sw $t1, 12($t5) # store: M[i][3] = i

 addi $t1, $t1, 1 # i++

 bne $t1, $t2, for # branch if (i != 10)

The for loop above sets the elements of column 3 to their row numbers. The first four instructions

used in the above for loop are used for address computation. Element addresses are computed

using the address of the first element in each row ($t5) and a fixed offset of 12. However, using a
pointer to traverse a column is much faster than re-computing the address from the index. Because
each row has 5 integer elements, the distance between two consecutive elements in the same

column is 20 bytes. Below, the MIPS assembly code is rewritten to use register $t0 as a pointer.
The number of instructions in the loop is reduced from 7 down to 4.

5: Arrays and Files Page 7

High-Level Program Using a Pointer to Traverse a Column in a Matrix

int M[10][5];

int i;

for (i=0; i<10; i++) {

 M[i][3] = i;

}

.data

 M: .word 0:50 # array of 50 words

&M[i][3] = &M + (i×5+3)×4 = &M + i×20 + 12

&M[i+1][3] = &M[i][3] + 20

.text

 la $t0, M # $t0 = &M[0][0]

 li $t1, 0 # $t1 = i = 0

 li $t2, 10 # $t2 = 10

for: # for loop

 sw $t1, 12($t0) # store: M[i][3] = i

 addi $t1, $t1, 1 # i++

 addi $t0, $t0, 20 # $t0 = &M[i][3]

 bne $t1, $t2, for # branch if (i != 10)

5.6 Files

The operating system manages files on the disk storage. It provides system calls to open, read from,
and write to files. The MARS tool simulates some of the services of the operating system and
provides the following system calls:

Service $v0 Arguments Result

Open file 13

$a0 = address of null-terminated string
containing the file name.

$a1 = 0 if read only

$a1 = 1 if write-only with create

$a1 = 9 if write-only with create and append

$v0 = file descriptor

$v0 is negative if error

Read from file 14

$a0 = file descriptor

$a1 = address of input buffer

$a2 = maximum number of characters to read

$v0 = number of
characters read

$v0 = 0 if end-of-file

$v0 is negative if error

Write to file 15

$a0 = file descriptor

$a1 = address of output buffer

$a2 = number of characters to write

$v0 = number of
characters written

$v0 is negative if error

Close file 16 $a0 = file descriptor

5: Arrays and Files Page 8

Here is a MIPS program that writes a string to an output file:

.data

 outfile: .asciiz "out.txt" # output file name

 msg: .asciiz "This text should be written in file out.txt"

.text

 li $v0, 13 # Service 13: open file

 la $a0, outfile # Output file name

 li $a1, 1 # Write-only with create

 syscall # Open file

 move $s0, $v0 # $s0 = file descriptor

 li $v0, 15 # Service 15: write to file

 move $a0, $s0 # $a0 = file descriptor

 la $a1, msg # $a1 = address of buffer

 li $a2, 43 # $a2 = number of characters to write

 syscall # Write to file

 li $v0, 16 # Service 16: close file

 move $a0, $s0 # $a0 = file descriptor

 syscall # Close file

5.7 In-Lab Tasks

1. Given the following data definition statements, compute the addresses of arr2, arr3, str1,

and str2, given that the address of arr1 is 0x10010000. Show your steps for a full mark.
Select “Show Labels Window (symbol table)” from the Settings menu in MARS to check the
values of your computed addresses.

.data

arr1: .word 5:20

arr2: .half 7, -2, 8, -6

arr3: .space 100

str1: .asciiz "This is a message"

str2: .asciiz "Another important string"

2. In problem 1, given that arr1 is a one-dimensional array of integers, what are the addresses of

arr1[5] and arr1[17]?

3. In problem 1, given that arr3 is a two-dimensional array of bytes with 20 rows and 5 columns,

what are the addresses of arr3[7][2], arr3[11][4], and arr3[19][3]?

4. Write a MIPS program that defines a one-dimensional array of 10 integers in the static area of
the data segment, asks the user to input all 10 array elements, computes, and displays their sum.

5: Arrays and Files Page 9

5. Write a MIPS program that allocates an n×n array of integers on the heap, where n is a user
input. The program should compute and print the value of each element as follows:

for (i=0; i<n; i++)

 for (j=0; j<n; j++) {

 a[i][j] = i+j;

 if (i>0) a[i][j] = a[i][j] + a[i-1][j];

 if (j>0) a[i][j] = a[i][j] + a[i][j-1];

 print_int(a[i][j]);

 print_char(' ');

 }

 print_char('\n');

}

6. Write a MIPS program to copy an input text file into an output file. The input and output file
names should be entered by the user. If the input file cannot be opened, print an error message.

5.8 Bonus Question

7. Write a MIPS program to sort an array of integers in ascending order using the selection sort
algorithm. The array size should be entered by the user. The array should be allocated
dynamically on the heap. The array elements should be generated randomly using the random
number generator. The array elements should be printed before and after sorting.

