Arrays and Files

5.1 Objectives

After completing this lab, you will:

» Define and initialize arrays statically in the daegment
* Allocate memory dynamically on the heap

e Compute the memory addresses of array elements

* Write loops in MIPS assembly to traverse arrays

* Write system calls to open, read from, and writélés

5.2 Defining and Initializing Arrays Statically in the Data Segment

Unlike high-level programming languages, assemahgliage has no special notion for an array.
An array is just a block of memory. In fact, alt@atructures and objects that exist in a hightleve
programming language are simply blocks of memorye Block of memory can be allocated
statically or dynamically, as will be explained gho

An array is a homogeneous data structure. It hafollowing properties:

1. All array elements must be of the same typesirel

2. Once an array is allocated, its size becomesl fand cannot be changed.
3. The base address of an array is the addreke fifst element in the array.
4

. The address of an element can be computed fierbase address and the element index.

An array can be allocated and initialized staticadlthe data segment. This requires:

1. Alabel: for the array name.

2. A .type directive for the type and size of each array elaim

3. Alist of initial values, or a count of the nuerlof elements
A data definition statement allocates memory indag segment. It has the following syntax:
label: .type value [, value] . .

Examples of data definition statements are shoiaowbe

5: Arrays and Files

.data

arrl: .half 5, -1 # array of 2 half words initialized to 5, -1
arr2: .word 1:10 # array of 10 words, all initialized to 1
arr3: .space 20 # array of 20 bytes, uninitialized

strl: .ascii "This is a string"

str2: .asciiz "Null-terminated string"

In the above examplarrl is an array of 2 half words, as indicated by thealf directive,
initialized to the value$ and -1. arr2 is an array of 10 words, as indicated by thword
directive, all initialized tol. The 1:10 notation indicates that the valdeis repeatedl® times.
arr3 is an array o20 bytes. The.space directive allocates bytes without initializing thein
memory. The.ascii directive allocates memory for a string, whichais array of bytes. The
.asciiz directive does the same thing, but adds a NULIe laytthe end of the string. In addition
to the above, thebyte directive is used to define bytes, thfloat and.double directives are
used to define floating-point numbers.

Every program has three segments when it is loadkedmemory by the operating system, as
shown in Figure 5.1. There is thext ssgment where the machine language instructions are stored
the data segment where constants, variables and arrays are staradl,thestack segment that
provides an area that can be allocated and freefirimtions. Every segment starts at a specific
address in memory. The data segment is divided anétatic area and adynamic area. The
dynamic area of the data segment is callechdap. Data definition statements allocate space for
variables and arrays in the static area.

OX7FFFFFFF
Stack Segment
Heap Area
0x10040000 Data Segment
0x10000000 Static Area
Text Segment
0x00400000
0x00000000 Reserved

Figure 5.1: The text, data, and stack segmentgpobgram

If arrays are allocated in the static area, them minght ask: what is the address of each array? To
answer this question, the assembler construcigrdol table that maps eachabel to a fixed
address. To see this table in the MARS simulatlecs “Show Labels Window (symbol table)”
from the Settings menu. This will display the Labelindow as shown in Figure 5.2. From this
figure, one can obtain the addressarirl (0x10010000), of arr2 (0x10010004), of arr3
(0x1001002¢), etc.

Thela pseudo-instruction loads the address of a lalbeldarregister. For exampleéa $t0, arr3
loads the address airr3 (0x1001002c) into register$t@. This is essential because the
programmer needs the address of an array to prasedsments in memory.

5: Arrays and Files

You can watch the values in the data segment winadewhown in Figure 5.3. To watch ASCII
characters, click on the ASCII box in the data seginwindow as shown in Figure 5.4. Notice that
characters appear in reverse order within a worigare 5.4. If thelw instruction is used to load
four ASCII characters into a register, then thstfaharacter is loaded into the least significane b
of a register. This is known &istle-endian byte ordering. On the other harmilg-endian orders the
bytes within a word from the most-significant te tleast-significant byte.

] Labels Tl

Label [Address A ‘ }

static_data.asm =
arr1 0x10010000
arr2 0x10010004
arr3 0x1001002c
str1 0x10010040

str2 0x10010050|+ |

Data [| Text

Figure 5.2: Labels (symbol table) window under MARS

o &

Value (+1c)

7] pata Segment
Address Value (+0)

Value (+4) | Value (+8) | Value (+c) | Value (+10) | Value (+14) | Value (+18)

0x££££0005

0x00000001

0x00000001

0x00000001

0x00000001

0x00000001

0x00000001

0x00000001

0x10010020

0x00000001

0x00000001

0x00000001

0x00000000

0x00000000

0x00000000

0x00000000

e

0x00000000

0x10010040
0x10010060

0x73696854

0x20736920

0x74732061

0x676e6972

0xécéc7S4e

0x7265742d

0x6l6e696d

0x20646574

0x69727473

0x000067¢6e

0x00000000

0x00000000

0x00000000

0x00000000

0x00000000

0x00000000

......

0x00000000

0x00000000

0x00000000

0x00000000

0x00000000

0x00000000

0x00000000

0x00000000| »

M|

DN

’ <@ l >3 H0x10010000(.data) I'] [v] Hexadecimal Addresses [v] Hexadecimal Values [| ASCII

Figure 5.3: Watching Values in hexadecimal in tleeDSegment

[*] pata Segment

o’ &

Address |

Value (+0)

Value (+4)

Value (+8)

Value (+c)

Value (+10)

Value (+14)

Value (+18)

Value (+1¢)

- \0

- \0 \0 \0O

\0 \0 \O

-/ \0 \0 \0O

\0 \0 \O

-/ \0 \0 \0O

\0 \0 \O

\0 \0 \0O

0x10010020

\0 \0 \0O

./ \0 \0 \0O

\0 \0 \0O

./ \0 \0 \0 \0O

\0 \0 \0 \O

\0 \0 \0 \0O

\0 \0 \0 \0O

\0 \0 \0 \O

0x10010040

s i h 1|

s i

t s a

g n i r

l1 1 u N

r e t

a n i m

d e ¢t

0x10010060

i rt s

\0\0 g n

\0 \0 \0 \O

\0 \0 \0 \O

\0 \0 \0 \0

\0 \0 \0 \O

\0 \0 \0 \0O

\0 \0 \0 \O

0x10010020] \0 \0 \0 \0| \0 \0 \0 \o| \0 \0 \0 \0

\0 \0 \0 \O

\0 \0 \0 \O

\0 \0 \0 \O

\0 \0 \0 \O

\0 \0 \0 \0

Ul

[]

[

I @ l l:(-> H0x10010000(.data) ’v] [v] Hexadecimal Addresses [v] Hexadecimal Values [v] ASCII

Figure 5.4: Watching ASCII Characters in the Dag¢gi8ent

5.3 Allocating Memory Dynamically on the Heap

Defining data in the static area of the data segmmght not be convenient. Sometimes, a program
wants to allocate memory dynamically at runtimee®@hthe functions of the operating system is to
manage memory. During runtime, a program can megeeasts to the operating system to allocate
additional memory dynamically on the heap. The haaga is a part of the data segment (Figure
5.1), that can grow dynamically at runtime. Thegoaon makes a system cav@ = 9) to allocate

5: Arrays and Files

memory on the heap, whe$a@ is the number of bytes to allocate. The systerhrealirns the
address of the allocated memory$we. The following program allocates two blocks on tieap:

.text
1li $a0, 100 # $a0 = number of bytes to allocate
1i $vo, 9 # system call 9
syscall # allocate 100 bytes on the heap
move $to, $vo # $t0 = address of first block
1li $a0, 200 # $a0 = number of bytes to allocate
1i $vo, 9 # system call 9
syscall # allocate 200 bytes on the heap
move $t1, $vo # $t1 = address of second block

5.4 Computing the Addresses of Array Elements

In a high-level programming language, arrays adexed. Typicallyarray[0] is the first element
in the array, an@rray[i] is the element at indek Because all array elements have the same
size, theraddress of array[i], denoted a&array[i] = &array + i x element_size.

In the above examplarr2 is defined as an array of wordswerd directive). Since each word4s
bytes, then&arr2[i] = &arr2 + ix4. The& s the address operator. Since the addreasrcit
IS given a®x10010004 in Figure 6.2, then&arr2[i] = 0x10010004 + ix4.

A two-dimensional array is stored linearly in mesa@imilar to a one-dimensional array. To define
matrix[Rows][Cols], one must allocatRows x Cols elements in memory. For example, one
can define a matrix of 10 rows x 20 columns wordrednts, all initialized to zero, as follows:

matrix: .word 0:200 # 10 by 20 word elements initialized to ©

In most programming languages, a two-dimensionalyais stored row-wise in memory: row O,
row 1, row 2, ... etc. This is known asw-major order. Then,address of matrix[i][]j],
denoted a&matrix[i][j] becomes:

&matrix[i][j] = &matrix + (ixCols + j) x element_size

If the number of columns @@ and the element sizedsbytes (word), then:

&matrix[i][j] = &matrix + (ix20 + j) x 4

For example, to translabeatrix[1][5] = 73 into MIPS assembly language, one must compute:
&matrix[1][5] = &matrix + (1x20+5)x4 = &matrix + 100.

la $t@, matrix # load address: $t0 = &matrix

1i $t1, 73 # $t1 = 73

sw $t1, 100($t0) # matrix[1][5] = 73

5: Arrays and Files

0 Each row has 20 word elements

1

i &matrix[i][j] = &matrix + (ix20+ j) x4
9

Unlike a high-level programming language, addredsutation is essential when programming in
assembly language. One must calculate the addrefsemy elements precisely when processing
arrays in assembly language.

5.5 Writing Loops to Traverse Arrays

The followingwhile loop searches an arraymfntegers linearly for a givetarget value:

int i=0;
while (arr[i]!=target && i<n) i = i+1;

Given that$a@ = &arr (address ofarr), $a1 = n, and$a2 = target, the above loop is
translated into MIPS assembly code as follows:

move $to, $a0 # $t0 = address of arr
1i $t1, o # $t1 = index i = ©

while:
1w $t2, o($to) # $t2 = arr[i]
beq $t2, $a2, next # branch if (arr[i] == target) to next
beq $t1, $al, next # branch if (i == n) to next
addi $t1, $t1, 1 #i= i+
sll $t3, $t1, 2 # $t3 = ix4
add $to, $a0, $t3 # $t0 = &arr + ix4 = &arr[i]
Jj while # jump to while loop

next:

To calculate the address afr[i], thes1l instruction shifts lefti by 2 bits (computesix4) and
then theadd instruction compute&arr[i] = &arr + ix4. However, one can also point to the next
array element by incrementing the addressti@d by 4, as shown below. Using a pointer to traverse
an array sequentially is generally faster than aatimg the address from the index.

5: Arrays and Files

while:

1w $t2, o($to)
beq $t2, $a2, next
beq $t1, $al, next

addi $t1, $t1, 1
addi $to, $to, 4
Jj while

next:

$t2 = arr[i]
branch if (arr[i] == target) to next
branch if (i ==
#1i=1i+1
$t0 = &arr[i]
jump to while loop

n) to next

A second example about a 2-dimensional array is/shmelow:

High-Level Program

MIPS Assembly Language Code

int M[10][5];

int i;

for (i=0; i<10; i++) {
M[i][3] = i;

}

.data
M: .word O:
&M[1i][3] =
.text
la $to,
1i $t1,
1i $t2,
for:
sll $t3,
sll $ta,
add $t5,
add $t5,
sw $t1,
addi $t1,
bne $t1,

50

&M + (ix5+3)x4 = &M + ix20 + 12

M
0
10

$t1, 4
$t1, 2
$t3, $t4a
$to, $t5
12($t5)
$t1, 1
$t2, for

array of 50 words

$to = amM[0][0]
#$tl=41=0

$t2 = 10

$t3 = ix16
$t4 = ix4
$t5 = ix20

$t5 = &M + ix20

store: M[i][3] = 1
i++

branch if (i != 10)

The for loop above sets the elements of column 3 to tle@rnumbers. The first four instructions
used in the abovéor loop are used for address computation. Elementeadds are computed
using the address of the first element in each (%b8) and a fixed offset of 12. However, using a
pointer to traverse a column is much faster thacoraputing the address from the index. Because
each row has 5 integer elements, the distance batweo consecutive elements in the same

column is 20 bytes. Below, the MIPS assembly cadeewritten to use regist§it® as a pointer.
The number of instructions in the loop is reduaednf7 down to 4.

5: Arrays and Files

High-Level Program Using a Pointer to Traverse a Column in a Matrix

int M[10][5]; .data
int i; M: .word ©:50 # array of 50 words
for (i=0; i<10; i++) { | # &M[i][3] = &M + (ix5+3)x4 = &M + ix20 + 12
M[i][3] = i; # &M[i+1][3] = &M[i][3] + 20

} .text

la $to, M # $to = &m[0][0]

1i $t1, o #$t1=1i=0

1i $t2, 10 # $t2 = 10

for: # for loop

Sw $t1, 12(%t0) # store: M[i][3] = 1
addi $t1, $t1, 1 # oi++

addi $to, $te, 20 # $t6 = &M[i][3]

bne $t1, $t2, for # branch if (i != 10)

The operating system manages files on the diskgtont provides system calls to open, read from,
and write to files. The MARS tool simulates sometlé services of the operating system and
provides the following system calls:

Service Sv0 | Arguments Result

$a0 = address of null-terminated string
containing the file name.

Open file 13 | $al1 =0 if read only

$al = 1 if write-only with create

$vo = file descriptor
$vO is negative if error

$a1 = 9 if write-only with create and append

$v0 = number of
characters read

' $vo = 0 if end-of-file
$a2 = maximum number of characters to rea

$a0 = file descriptor
Read from file| 14 | $al = address of input buffer

VO is negative if error

$a0 = file descriptor $v0 = number of
Write to file 15 | $al = address of output buffer characters written

$a2 = number of characters to write $vo is negative if error
Close file 16 | $a0 = file descriptor

5: Arrays and Files

Here is a MIPS program that writes a string to atpuot file:

.data

outfile: .asciiz "out.txt" # output file name

msg: .asciiz "This text should be written in file out.txt"
.text

1i $vo, 13 # Service 13: open file

1a $a0, outfile # Output file name

1li $al1, 1 # Write-only with create

syscall # Open file

move $s0, $vo # $s0 = file descriptor

1i $vo, 15 # Service 15: write to file

move $a0, $s0 # $a0 = file descriptor

la $al, msg # $al = address of buffer

1i $a2, 43 # $a2 = number of characters to write

syscall # Write to file

1i $vo, 16 # Service 16: close file

move $a0, $s0 # $a0 = file descriptor

syscall # Close file

5.7 In-Lab Tasks

1. Given the following data definition statemertempute the addresses afr2, arr3, stri,
and str2, given that the address afrl is 9x10010000. Show your steps for a full mark.
Select “Show Labels Window (symbol table)” from t8ettings menu in MARS to check the
values of your computed addresses.

.data

arrl: .word 5:20

arr2: .half 7, -2, 8, -6

arr3: .space 100

strl: .asciiz "This is a message"

str2: .asciiz "Another important string"

2. In problem 1, given tharrl is a one-dimensional array of integers, what heeaddresses of
arrl[5] andarrl[17]7?

3. In problem 1, given tharr3 is a two-dimensional array of bytes wiz@ rows ands columns,
what are the addressesarfr3[7][2], arr3[11][4], andarr3[19][3]?

4. Write a MIPS program that defines a one-dimaerdiarray of 10 integers in the static area of
the data segment, asks the user to input all Hy alements, computes, and displays their sum.

5: Arrays and Files

5. Write a MIPS program that allocates m¥n array of integers on the heap, wherés a user
input. The program should compute and print theealf each element as follows:
for (i=0@; i<n; i++)
for (j=0; j<n; j++) {
a[i][J] = i+3;
if (i»0) a[i][]j]
if (j>e) a[i][]]
print_int(a[i][j]);
print_char(' ');
}
print_char('\n");
}

6. Write a MIPS program to copy an input text fiko an output file. The input and output file
names should be entered by the user. If the inleutdnnot be opened, print an error message.

5.8 Bonus Question

7. Write a MIPS program to sort an array of integer ascending order using the selection sort
algorithm. The array size should be entered by uker. The array should be allocated
dynamically on the heap. The array elements shbeldenerated randomly using the random
number generator. The array elements should beegrivefore and after sorting.

a[i][J] + a[i-1][3];
a[i][J] + a[i][]-1];

5: Arrays and Files

