Flow Control

4.1 Objectives

After completing this lab, you will:

. Get familiar with MIPS Jump and Branch instructions

. Learn about pseudo instructions in MIPS

. Learn how to translate high-level flow control ctosts (if-then-else, for loop, while
loop) to MIPS code

4.2 MIPS Jump and Branch Instructions

Like all processors, MIPS has instructions for iempénting unconditional and conditional jumps.
The MIPS Jump and Branch instructions are showiralie 4.1.

Instruction Meaning | Format

j label jump to label opi=2 imm328

beq rs, i, label |branchif(rs==rt) |op®=4| rs® | r® imm718
bne rs, i, label |branchif(rs!=nrt) |op®=5| rs® | r® imm?18
blez rs, label |branchif(rs<=0) |opf=6|rs2 | 0 imm16
bgtz rs,label |branchif(rs>0) |op®=7| rs® | O imm?18
bltz rs, label |branchif(rs<0) |opf=1|rs2 | 0O imm16
bgez rs, label |branchif (rs>=0) |op®=1| rs® | 1 imm?18

Table4.1: MIPS Jump and Branch Instructions.

For unconditional jump, the instructigh label is used where label is the address of the target
instruction as shown below:

Jj label # jump to label
label:
4: Flow Control

There are two MIPS conditional branch instructitdret branch based on the condition whether two
registers are equal or not as follows:

beq Rs, Rt, label # branch to label if (Rs == Rt)

bne Rs, Rt, label # branch to label if (Rs != Rt)

Four additional MIPS instructions are provided loase comparing the content of a register vaith
as follows:

bltz Rs, label # branch to label if (Rs < 0)
bgtz Rs, label # branch to label if (Rs > 0)
blez Rs, label # branch to label if (Rs <= 0)
bgez Rs, label # branch to label if (Rs >= 0)

Note that MIPS does not provide the instructibefjz andbnez as these can be implemented
using thebeq andbne instructions with registe$e used as the second operand.

MIPS also provides fowset on less thaimstructions as follows:

slt rd, rs, rt # if (rs <rt) rd =1 elserd =0
sltu rd, rs, rt # unsigned <

slti rt, rs, iml6 # if (rs < im1l6) rt = 1 else rt = 0
sltiu rt, rs, imlé6 # unsigned <

Note that the instructionslt andslti are used for signed comparison while instructisbhtu
andsltiu are used for unsigned comparison.

For example, assume th$$0 = 1 and$sl = -1 = oxffffffff, then the following two
instructions produce different results as showowel

slt $to, $s0, $s1 # results in $to = o

sltu $to, $s0, $s1 # results in $t0 = 1

4.3 Pseudo Instructions

Pseudo instructions are instructions introducedrbpssembler as if they were real instructions. We
have seen an example of a pseudo instruction hefehéch is theli instruction. Pseudo
instructions are useful as they facilitate prograngnn assembly language.

For example, the MIPS processor does not haveotloving useful conditional branch comparison
instructions:

4: Flow Control

blt, bltu branch if less than (signed/unsigned)

ble, bleu branch if less or equal (signed/unsigned)
bgt, bgtu branch if greater than (signed/unsigned)
bge, bgeu branch if greater or equal (signed/unsigned)

The reason for not implementing these instruct@spart of the MIPS instruction set is that they
can be easily implemented based on a set of tviucisns.

For example, the instructioblt $s0, $s1, label can be implemented using the following
sequence of two instructions:

slt $at, $s0, $s1

bne $at, $zero, label

Similarly, the instructionble $s2, $s3, label can be implemented using the following
sequence of two instructions:

slt $at, $s3, $s2

beq $at, $zero, label

Table 4.2 shows more examples of pseudo instrugtidote that the assembler temporary register
$at=$1is reserved for its own use.

Pseudo-Instructions | Conversion to Real Instructions
move Ssl, Ss2 addu sl, SSzero, 5$s2
not $sl, $s2 nor $s1, $s2, $zero
1i $sl, Oxabecd ori $sl1l, S$zero, Oxabecd

lui Sat, Oxabcd
ori $s1, $at, 0x1234
sgt Ssl, Ss2, $s3 slt 5s1, $s3, $s2
slt Sat, $sl, $s2
bne Sat, S$zero, label

1i $sl, Oxabcdl234

blt $sl1, $s2, label

Table 4.2: Examples of pseudo instructions.

4.4 Translating High-Level Flow Control Constructs

We can translate any high-level flow construct iagsembly language using the jump, branch and
set-less-than instructions. For example, let usiciem the followingif statement:

if (a==b) c=d + e; else c =d - e;

4: Flow Control

Let us assume that variablasb, c, d, e are stored in registess® thru $s4 respectively. The
following assembly code implements this IF statetmen

bne $s0, $s1, else
addu $s2, $s3, $s4
Jj exit
else: subu $s2, $s3, $s4
exit:

We can also implement an IF statement with a comg@ocondition involving logical AND
operation. For example, let us consider implementie following IF statement:

if (($s1 > 0) && ($s2 < 0)) {$s3++;}

The IF statement is implemented efficiently usihg tollowing assembly code which uses the fall
through concept which skips the execution of ttsgruction if the first condition is false otherwise
it continues the execution:

blez $s1, next # skip if false

bgez $s2, next # skip if false

addiu $s3, $s3, 1 # both are true
next:

Similarly, we can translate an IF statement witltaapound condition involving logical OR
operation. For example, let us consider implemenitne following IF statement:

if (($s1 > $s2) || ($s2 > $s3)) {$s4 = 1;}

The IF statement is implemented efficiently usihg following assembly code which checks the
first condition and if it is true, it skips the sed condition:

bgt $s1, $s2, L1 # yes, execute if part
ble $s2, $s3, next # no: skip if part

L1: 1i $s4, 1 # set $s4 to 1

next:

We can also implement all types of loops. Let ussaer implementing the followinfor loop:
for (i=0; i<n; i++) {

loop body

4: Flow Control

Let us assume that variahids stored in registefs@ andn is stored in registe$s1. Then, thefor
loop is implemented using the following assemblgiezo

1li $so, © #i=20
ForLoop:

bge $s0, $s1, EndFor

loop body

addi $s0, #se, 1 # oi++

j ForLoop

EndFor:

Consider the implementing of the followinbpile loop:
i=0;
while (i<n) {
loop body
i++;
}

We can note that thehile loop has identical behavior to tHer loop and hence its assembly
code will be identical.

Finally, let us consider implementing the followidg-while loop:
i=0;
do {
loop body
i++;
} while (i<n)

Thedo-while loop can be translated using the following assgrobte:

1i $s0, © #i=o0
WhilelLoop:

loop body

addi $s0, $s0, 1 # i++

blt $s0, $s1, WhileLoop

4: Flow Control

4.5 In-Lab Tasks

1.

Write a program that asks the user to enter agéntand then displays the number of 1's in the
binary representation of that integer. For examipléne user enters, then the program should
display2.

Write a program that asks the user to enter twegirs:nl andn2 and prints the sum of all
numbers fromnl to n2. For example, if the user entaisd=3 andn2=7, then the program
should display the sum as.

Write a program that asks the user to enter argeéntand then display the hexadecimal
representation of that integer.

The Fibonacci sequence are the numbers in thenfmigpinteger sequence, 1, 1, 2, 3,
5, 8, 13, 21, 34, 55, 89, 144,

The first two numbers ai@ and1 and each subsequent number is the sum of theopietivo.
Write a program that asks the user to enter aipesiiteger numben and then prints tha™
number in the Fibonacci sequence. The followingtlgm can be used:

Input: n positive integer
Output: nth Fibonacci number
Fibo = @ Fibl =1

for (i=2; i <= n; i++) do

temp = fibo

fibo = fib1l

fibl = temp + fibl
if (n > @) fib = fib1l
else fib = 0

4: Flow Control

4.6 Bonus Problem

5. One method for computing the greatest common divaéawo positive numbers is the binary
gcd method, which uses only subtraction and diwidig 2. The algorithm of the binary gcd is
outlined below:

Input: a, b positive integers
Output: g and d such that g is odd and gcd(a, b) = gx2°
d=20
while (a and b are both even) {
a=a/2
b = b/2
d=d+ 1
}
while (a != b) {
if (a is even) a = a/2
else if (b is even) b = b/2
else if (a > b) a = (a - b)/2
else b = (b - a)/2

g=a

Write a program that asks the user to enter twatipesnumbersa and b and outputs the
greatest common divisor of the two numbers by imgting the given algorithm. If the user
entersa=48 andb=18, your program should output the gcdeéas

4: Flow Control

