Algorithms and Flow chart

ALGORITHMS AND FLOWCHARTS

m A typical programming task can be divided into
two phases:

m Problem solving phase

produce an ordered sequence of steps that describe
solution of problem

~1this sequence of steps is called an algorithm
s /Implementation phase

implement the program in some programming
language

Steps in Problem Solving

m First produce a general algorithm (one can use
pseudocode)

m Refine the algorithm successively to get step by
step detailed algorithm that is very close to a
computer language.

m Pseudocode is an artificial and informal
language that helps programmers develop
algorithms. Pseudocode is very similar to
everyday English.

Algorithm

» Algorithm can be defined as: “A sequence of activities to be processed
for getting desired output from a given input.”

* Then we can say that:
1. Getting specified output is essential after algorithm is executed.
2. One will get output only if algorithm stops after finite time.

3. Activities in an algorithm to be clearly defined in other words for
it to be unambiguous.

Types of Algorithm

* The algorithm and flowchart, classification to the three types of
control structures. They are:
1. Sequence
2. Branching (Selection)
3. Loop (Repetition)

Sequence

* The sequence is exemplified by sequence of statements place one
after the other — the one above or before another gets executed first.
In flowcharts, sequence of statements is usually contained in the

rectangular process box.

Branching

* The branch refers to a binary decision based on some condition. If
the condition is true, one of the two branches is explored; if the
condition is false, the other alternative is taken. This is usually

represented by the ‘if-then’ construct in pseudo-codes and programs.

* In flowcharts, this is represented by the diamond-shaped decision

box. This structure is also known as the selection structure.

Looping

* The loop allows a statement or a sequence of statements to be repeatedly executed based

on some loop condition.

* |t is represented by the ‘while’ and ‘for’ constructs in most programming languages, for
unbounded loops and bounded loops respectively. (Unbounded loops refer to those whose
number of iterations depends on the eventuality that the termination condition is satisfied;

bounded loops refer to those whose number of iterations is known before-hand.)

* In the flowcharts, a back arrow hints the presence of a loop. A trip around the loop is
known as iteration. You must ensure that the condition for the termination of the looping
must be satisfied after some finite number of iterations, otherwise it ends up as an infinite
loop, a common mistake made by inexperienced programmers. The loop is also known as the

repetition structure.

Properties of Algorithm
Properties are:
1) Finiteness: An algorithm must always terminate after a finite number of steps. It
means after every step one reach closer to solution of the problem and after a

finite number of steps algorithm reaches to an end point.

2) Definiteness: Each step of an algorithm must be precisely defined. It is done by
well thought actions to be performed at each step of the algorithm. Also the

actions are defined unambiguously for each activity in the algorithm.

3) Input: Any operation you perform need some beginning value/quantities
associated with different activities in the operation. So the value/quantities are

given to the algorithm before it begins.

Properties of Algorithm

4) Output: One always expects output/result (expected value/quantities) in terms of output from

an algorithm. The result may be obtained at different stages of the algorithm. If some result is from
the intermediate stage of the operation then it is known as intermediate result and result obtained
at the end of algorithm is known as end result. The output is expected value/quantities always have

a specified relation to the inputs.

5) Effectiveness: Algorithms to be developed/written using basic operations. Actually operations
should be basic, so that even they can in principle be done exactly and in a finite amount of time by

a person, by using paper and pencil only.

Pseudocode & Algorithm

m Example 1: Write an algorithm to
determine a student’s final grade and
indicate whether it is passing or failing.
The final grade is calculated as the
average of four marks.

Pseudocode & Algorithm

Pseudocode:
m /nput a set of 4 marks
™ ga!cu!ate their average by summing and dividing
y 4
m /f average is below 50
Print “FAIL”
else
Print “PASS”

Pseudocode & Algorithm

m Detailed Algorithm
L Step 1: Input M1,M2,M3,M4
Step 2: GRADE <« (M1+M2+M3+M4)/4
Step 3: if (GRADE < 50) then
Print “FAIL”
else
Print “PASS”

endif

The Flowchart

m (Dictionary) A schematic representation of a sequence of
operations, as in a manufacturing process or computer
program.

m (Technical) A graphical representation of the sequence
of operations in an information system or program.
Information system flowcharts show how data flows from
source documents through the computer to final
distribution to users. Program flowcharts show the
sequence of instructions in a single program or
subroutine. Different symbols are used to draw each
type of flowchart.

The Flowchart

A Flowchart
'shows logic of an algorithm

‘'emphasizes individual steps and their
interconnections

~e.g. control flow from one action to the next

Flow Chart Symbols

Symbol Name Function

Indicates any type of internal
Process operation mside the Processor
or Memory

Used for any Input / Output
(L'O) operation. Indicates that

nput) t . .
/ / i the computer 1s to obtain data
or output results

Used to ask a question that can
Decision be answered 1n a binary
format (Y es/No. Tme/False)

Allows the flowchart to be
O dravwn without intersecting
Connector

lines or without a reverse
flow.

Tsed to mvolke a subroutine or

Predefined Process
an Intermapt program._

Indicates the starting or ending

[: :I Ternmunal of the program._ process, or
mtermupt program

Tl -— Flow Lines Shows direction of flow.
—_—

General Rules for flowcharting

1. All boxes of the flowchart are connected with Arrows. (Not lines)

2. Flowchart symbols have an entry point on the top of the symbol with no other entry points. The

exit point for all flowchart symbols is on the bottom except for the Decision symbol.
3. The Decision symbol has two exit points; these can be on the sides or the bottom and one side.

4. Generally a flowchart will flow from top to bottom. However, an upward flow can be shown as

long as it does not exceed 3 symbols.

5. Connectors are used to connect breaks in the flowchart. Examples are:

* From one page to another page.
* From the bottom of the page to the top of the same page.

* An upward flow of more then 3 symbols

General Rules for flowcharting

6. Subroutines and Interrupt programs have their own and independent flowcharts.

7. All flow charts start with a Terminal or Predefined Process (for interrupt programs or subroutines)

symbol.

8. All flowcharts end with a terminal or a contentious loop.

Example

Input
M1,M2 M3, M3

GRADE+(M1+M2+M3+M4)/4

Nv

<

w) <

PRINT
“FAIL™

Step 1:
Step 2:
Step 3:

Input M1,M2,M3,M4
GRADE « (M1+M2+M3+M4)/4
if (GRADE <50) then
Print “FAIL"
else
Print “PASS”
endif

Example 2

= Write an algorithm and draw a flowchart to
convert the length in feet to centimeter.

Pseudocode:
m /nput the length in feet (Lft)

m Calculate the length in cm (Lcm) by
multiplying LFT with 30

m Print length in cm (LCM)

Example 2

Flowchart
Algorithm ()
m Step 1: Input Lft ale
m Step 2: Lcm « Lft x 30 / - /
m Step 3: Print Lcm [Lom < nxs0

w
Print
Lem

STOP

Example 3

Write an algorithm and draw a flowchart that
will read the two sides of a rectangle and
calculate its area.

Pseudocode

m /nput the width (W) and Length (L) of a rectangle
m Calculate the area (A) by multiplying L with W

m Print A

Example 3

Algorithm

m Step 1: Input W,L
mStep2: A«—L x W
m Step 3: Print A

Example 4

m Write an algorithm and draw a flowchart that
will calculate the roots of a quadratic equation

ax’ +bx+c=0

m Hint: d = sqrt (b —4ac), and the roots are:
x1=(—b+d)/2a and x2 = (-b— d)/2a

Example 4

Pseudocode:

m /nput the coefficients (a, b, c) of the
quadratic equation

m Calculate d

m Calculate x1

m Calculate x2

m Print x1 and x2

Example 4

m Algorithm:

Step 1:

Step 2:

Step 3:

Step 4:
Step 5:

Input a, b, ¢

desart(pxb—4xaxc)
X1« (-b+d)/(2x a)
X2« (-b-=d)/ (2x a)

Print x1, x2

C START)
‘

yd

Input
a,b,c

Fy

r

d<« sqrifbxb-4x axc)

v

X, «(=b«+ d)/(2x a)

X, ¢ (=b—d) /(2 x a)

<

Print
Xy JXs

)

=

DECISION STRUCTURES

The expression A>B is a logical expression
it describes a condition we want to test

if A>B is true (if A is greater than B) we take
the action on left

print the value of A

if A>B is false (if A is not greater than B) we
take the action on right

print the value of B

DECISION STRUCTURES

IF-THEN-ELSE STRUCTURE

m [he structure is as follows
If condition then
true alternative
else
false alternative
endif

IF-THEN-ELSE STRUCTURE

m The algorithm for the flowchart is as
follows:

If A>B then

print A Y S
else

print B Print m

endif

Relational Operators

Relational Operators

Operator

Description

>

Greater than

Less than

Equal to

Greater than or equal to

Less than or equal to

| IA|IV

Not equal to

Example 5

m Write an algorithm that reads two values, determines the
largest value and prints the largest value with an
identifying message.

ALGORITHM
Step 1: Input VALUE1, VALUEZ2
Step 2: if (VALUE1 > VALUE?2) then
MAX <« VALUE1
else
MAX «— VALUEZ2
endif

Step 3: Print “The largest value is”, MAX

Example 5

START

Input
VALUE1,VALUE

v

MAX < VALUE2

¥

Print
“The largest value is”,
MAX

STOP

NESTED IFS

m One of the alternatives within an |F—
THEN—-ELSE statement

~imay involve further IF-THEN-ELSE
statement

Example 6

m Write an algorithm that reads three
numbers and prints the value of the largest
number.

Example 6

Step 1: Input N1, N2, N3
Step 2: if N1>N2) then
if (N1>N3) then
MAX « N1
else
MAX « N3
endif
else
if (N2>N3) then
MAX « N2
else
MAX « N3
endif
endif

[N1>N2, N1>N3]

[N3>N1>N2]

[N2>N1, N2>N3]

[N3>N2>N1]

Step 3: Print “The largest number is”, MAX

Example 6

m Flowchart: Draw the flowchart of the
above Algorithm.

Example 7

m Write and algorithm and draw a flowchart
{0

a) read an employee name (NAME),
overtime hours worked (OVERTIME),
hours absent (ABSENT) and

b) determine the bonus payment
(PAYMENT).

