
Integration of Deployement Diagrams with Other UML Diagrams

Benefits of Deployement Diagrams

Challenges of Deployement Diagrams

What is a Deployment Diagram?

A Deployment Diagram illustrates how software architecture, designed on a

conceptual level, translates into the physical system architecture where the

software will run as nodes. It maps out the deployment of software

components onto hardware nodes and depicts their relationships through

communication paths, enabling a visual representation of the software’s

execution environment across multiple nodes.

Key elements of a Deployment Diagram

1. Nodes

These represent the physical hardware entities where software components

are deployed, such as servers, workstations, routers, etc.

2. Components

Represent software modules or artifacts that are deployed onto nodes,

including executable files, libraries, databases, and configuration files.

3. Artifacts

Physical files deployed onto nodes, embodying the actual implementation of

software components, such as executables, scripts, databases, etc.

4. Dependencies

Reflect relationships or connections between nodes and components,

indicating communication paths, deployment constraints, or other

dependencies.

5. Associations

Show relationships between nodes and components, signifying that a

component is deployed on a particular node, thus mapping software



components to physical nodes.

6. Deployment Specification

Describes the configuration and properties of nodes and components,

encompassing hardware specifications, software configurations,

communication protocols, etc.

7. Communication Paths

Represent channels or connections facilitating communication between

nodes and components, including network connections, communication

protocols, etc.

Notations in Deployment Diagram

Refers to the symbols, shapes, and conventions used to represent different

elements within the diagram, like:

1. Component

A component represents a modular and reusable part of a system, typically

implemented as a software module, class, or package. It encapsulates its

behavior and data and can be deployed independently.

Typically represented as a rectangle with two smaller rectangles 

protruding from its sides, indicating ports for connections. The

component’s name is written inside the rectangle.



2. Artifact

An artifact represents a physical piece of information or data that is used or

produced in the software development process. It can include source code

files, executables, documents, libraries, configuration files, or any other

tangible item.

Typically represented as a rectangle with a folded corner, labeled

with the artifact’s name. Artifacts may also include additional

information, such as file extensions or versions.

3. Interface



An interface defines a contract specifying the methods or operations that a

component must implement. It represents a point of interaction between

different components or subsystems.

Represented as a circle or ellipse labeled with the interface’s name.

Interfaces can also include provided and required interfaces, denoted

by “+” and “-” symbols, respectively.

4. Node

A node represents a physical or computational resource, such as a hardware

device, server, workstation, or computing resource, on which software

components can be deployed or executed.

Represented as a box with rounded corners, usually labeled with the

node’s name. Nodes can also include nested nodes to represent

hierarchical structures.

5. Communication path



A straight line that represents communication between two device nodes.

Dashed lines in deployment diagrams often signify relationships or

dependencies between elements, indicating that one element is related to or

dependent on another.

Use Cases of Deployment Diagrams

System Planning: Deployment diagrams help plan how software systems

will be set up on different devices. They show where each part of the

system will go.

Infrastructure Design: They help design the hardware needed to support

the software. By showing which software parts go where, they help

decide what devices and networks are needed.

Resource Allocation: Deployment diagrams make sure each part of the

software has enough resources, like memory or processing power, to run

well.

Dependency Analysis: They show how different parts of the software

depend on each other and on the hardware. This helps understand how

changes might affect the whole system.

Performance Optimization: By seeing how everything is set up, teams

can find ways to make the software run faster and smoother.

Security Planning: Deployment diagrams help plan how to keep the

system safe from hackers or other threats by showing where security

measures are needed.

Documentation: They provide a visual guide to how the system is set up,

making it easier to understand and manage.

Steps for creating a Deployment Diagram



Step1: Identify Components: List all software parts and hardware

devices that will be in the deployment diagram.

Step 2: Understand Relationships: Figure out how these parts connect

and work together.

Step 3: Gather Requirements: Collect details about hardware, network

setups, and any special rules for deployment.

Step 4: Draw Nodes and Components: Start by drawing the hardware

devices (nodes) and software parts (components) using standard symbols

roughly at first improvise it and draw the final one.

Step 5: Connect Nodes and Components: Use lines or arrows to show

how nodes and components are linked, indicating how they talk to each

other.

Step 6: Add Details: Label everything clearly and include any extra info,

like hardware specs or communication protocols.

Step 7: Documentation: Write down any important decisions or

assumptions made while creating the diagram.

Deployment Patterns

Deployment patterns are standardized methods or recommended practices

used for efficiently deploying software onto hardware infrastructure. These

patterns offer guidance and established strategies for organizing and

deploying software components across various environments. By tackling

common deployment challenges like scalability, reliability, performance, and

maintainability, deployment patterns streamline the deployment process and

enhance system efficiency.

Client-Server Deployment: By visually depicting client applications

connected to server nodes, the diagram can illustrate the client-server

architecture commonly used in many systems.

Three-Tier Architecture: The deployment diagram can show how

presentation, application logic, and data storage components are

distributed across different nodes, reflecting the three-tier architecture.

Microservices Architecture: If the system is designed using a

microservices architecture, the deployment diagram can illustrate how

individual microservices are deployed onto separate nodes or containers.

Containerization: If containerization technologies like Docker are used,

the deployment diagram can show how different containers are deployed

onto host machines.



Cloud Deployment: If the system is deployed in a cloud environment, the

diagram can illustrate how components are deployed across different

cloud services or regions.

Real-World Examples For Deployment Diagram

Example 1

Deployement Diagram For Mobile Banking Andorid Services.

In a deployment diagram, nodes represent the different devices or hardware

components in a system. In this specific example, the node represents the

client’s Android device. The components, on the other hand, represent the

software components installed on these devices. In this case, the component

represents the banking application installed on the Android device.

The diagram also illustrates how the user interacts with the banking

server through the web.

This interaction involves the user accessing the banking application on

their Android device, which then communicates with the application

server over the web to perform various banking tasks, such as checking

account balances or transferring funds.

Overall, the deployment diagram provides a visual representation of how

the software components are deployed on the hardware nodes and how

these components interact with each other to provide the desired

functionality to the user. 



Example 2

Deployement Diagram For Online Exam Registration System.

The online exam registration process typically includes a series of features

designed to streamline and simplify the registration experience for users.

After logging in or registering for an account, users can browse and select

their desired exam from a list of available options.

Explanation of the above example:

Login or Registration for exam: This is the first step where users need to

provide their credentials to access the exam registration system. If a user

System Design Tutorial What is System Design System Design Life Cycle High Level Design HLD Low Level D

https://www.geeksforgeeks.org/system-design-tutorial/?ref=shm
https://www.geeksforgeeks.org/what-is-system-design-learn-system-design/?ref=shm
https://www.geeksforgeeks.org/system-design-life-cycle-phases-models-and-use-cases/?ref=shm
https://www.geeksforgeeks.org/what-is-high-level-design-learn-system-design/?ref=shm
https://www.geeksforgeeks.org/what-is-low-level-design-or-lld-learn-system-design/?ref=shm


is new, they need to register by providing necessary details like name,

email, contact number, etc.

Select exam: After successful login or registration, users can select the

exam they wish to register for. This might involve choosing from a list of

available exams, checking exam dates and locations, and ensuring

eligibility criteria are met.

Manage profile and status: Users can manage their profiles, such as

updating contact information, viewing their registration status, and

printing e-receipts.

View Profile

View Profile: Here you can Access registered info and Confirm the given

accuracy information. Update the contact data and needed Print the e-

receipt, also save all the details as – Save profile

Payment: Once the exam is selected, users proceed to the payment page

to make the necessary fee payment. This could be done through various

online payment methods like credit/debit cards, net banking, digital

wallets, etc.

Test: Post-registration and payment, users can access sample tests or

practice papers if available, to prepare for the exam.

View result: After the exam, users can view their results on the website

by logging in to their account.

Report: Users might have access to various reports like scorecards,

response sheets, or feedback forms, depending on the exam and the

policies of the examination board.

Integration of Deployment Diagrams with Other UML

Diagrams

Integration of Deployment Diagrams with other UML diagrams helps in

providing a comprehensive view of the system, showing both the logical

structure (as depicted in other UML diagrams) and the physical deployment

of the system components.

Use Case Diagrams: Deployment diagrams can be related to use case

diagrams to show which hardware nodes are involved in each use case.

This helps in understanding the physical infrastructure needed to support

different use cases.

Class Diagrams: Deployment diagrams can be linked to class diagrams to

show how classes are distributed across different nodes. This helps in

https://www.geeksforgeeks.org/use-case-diagram/
https://www.geeksforgeeks.org/unified-modeling-language-uml-class-diagrams/

