NS2 Tutorial

Chang-Gun Lee (cglee@snu.ac.kr)
Assistant Professor
The School of Computer Science and Engineering

Seoul National University

What we need

Linux (e.g., RedHat 8.0) installed with full options
Tcl/Tk (version 8.4.14)

otcl (version 1.12)

TclCL (version 1.18)

ns-2 (version 2.30)

nam (version 1.11)

Xgraph (version 12.1)

Get all of them (piece by piece) from
(click “Download and Build ns)

Step 1: Tcl/Tk install

1. Already done!

4.

Step 2: otcl Install

Decompress
tar zxvf otcl-src-1.12.tar.gz

Configure
cd otcl-1.12
Jconfigure --with-tcl=/usr/X11R6 --with-tcl-ver=8.4 --with-tk=/usr/X11R6

If it complains that “tclint.h” doesn’t exist”, copy tclint*.h from tcl8.4.14/generic to
/usr/X11R6/include

Make
cd otcl-1.12
make (this will creat otclsh, owish, libotcl.a, libotcl.so)
Test
cd otcl-1.12
make test (skip!)
Install (be the super user first)
cd otcl-1.12
make install (this will copy files to /usr/local/bin, /usr/local/lib, /usr/local/include)

2.

3.

4.

Step 3: TclCL install

Decompress

tar zxvf tclcl-src-1.18.tar.gz
Configure

cd tclcl-1.18

Jconfigure --with-tcl=/usr/X11R6 --with-tcl-ver=8.4 --with-tk=/usr/X11R6 --with-tk-
ver=8.4

Make
cd tclcl-1.18
make (this will creat tcl2c++, libtclcl.a)

Install (be the super user first)
cd tclcl-1.18
make install (this will copy files to /usr/local/bin, /usr/local/lib, /usr/local/include)

4.

S.

Step 4: NS-2 install

tar zxvf ns-src-2.30.tar.gz
Configure
cd ns-2.30
Jconfigure --with-tcl=/usr/X11R6 --with-tcl-ver=8.4 --with-tk=/usr/X11R6 --with-tk-
ver=8.4
Make
cd ns-2.30
make
Test
cd ns-2.30
Jvalidate
Note: if it complains that “Cannot load libotcl8.4.s0”, copy otcl-1.12/libotcl.so to
fusr/local/lib and add “usr/local/lib” to LD _LIBRARY_PATH by editing .bashrc
Install
Copy ns to /usr/local/bin

Step 5: nam install

1. Get the binary release nam-1.11-linux-i386.tar.gz from
2. Decompress

— tar xzvf nam-1.11-linux-i386.tar.gz
3. Install

- copy nam /usr/local/bin

2.

3.

4.

Step 6: Xgraph install

Decompress
tar xzvf xgraph-12.1.tar.gz
Configure
cd xgraph-12.1
Jconfigure
Make
cd xgraph-12.1
make
Install (be the super user)
cd xgraph-12.1
make install (this will copy xgraph to /usr/local/bin)

NS-2 Tutorial (1)

Two nodes connected through a duplex link

— Source node send CBR traffic over UDP during the time interval [0.5
sec, 4.5 sec]
— Destination node receive it

What we program
— examplel.tcl: specify node topology and simulation scenario

What we have to do
— ns examplel.tcl

What to learn
— How to define node and their connections
— How to use the existing protocol agents (e.g., UDP)
— How to use the application agents (e.g., CBR)
— How to run “nam” in the tcl script to view the simulation

examplel.tcl

#Create a simulator object
set ns [new Simulator]

#Open the nam trace file
set nf [open out.nam w]
$ns namtrace-all $nf

#Define a 'finish’ procedure
proc finish {} {
global ns nf
$ns flush-trace
#Close the trace file
close $nf
#Execute nam on the trace file
exec nam out.nam &
exit 0

}

#Create two nodes
set nO [$ns node]
set n1 [$ns node]

#Create a duplex link between the nodes
$ns duplex-link $n0 $n1 1Mb 10ms DropTail

#Create a UDP agent and attach it to node n0
set udp0 [new Agent/UDP]
$ns attach-agent $n0 $udp0

Create a CBR traffic source and attach it to udpO
set cbrO [new Application/Traffic/CBR]

$cbr0 set packetSize_ 500

$cbr0 set interval _ 0.005

$cbr0 attach-agent $udp0

#Create a Null agent (a traffic sink) and attach it to
node nl

set nullO [new Agent/Null]

$ns attach-agent $n1 $null0

#Connect the traffic source with the traffic sink
$ns connect $udp0 $nullo

#Schedule events for the CBR agent

$ns at 0.5 "$cbrO start"

$ns at 4.5 "$cbr0 stop™

#Call the finish procedure after 5 seconds of simulation
time

$ns at 5.0 "finish"

#Run the simulation
$ns run

NS-2 Tutorial (2)

Three nodes connected through duplex links
Source node (Node 0) sends CBR traffic over UDP during the time
interval [0.5 sec, 4.5 sec] via Node 2 toward the final destination Node 3
Source node (Node 1) sends CBR traffic over UDP during the time
interval [1.0 sec, 4.0 sec] via Node 2 toward the final destination Node 3
Router (Node 2) routes the traffic
Destination node (Node 3) receive it

How to run
ns example2.tcl

What to learn
How to classify flows (visualize them with different colors)
How to monitor a queue
Observe unfair drop by DropTail queue
Observe if SFQ (Stochastic Fair Queueing) can solve the unfairness

example?2.tcl

#Create a simulator object
set ns [new Simulator]

#Define different colors for data flows
$ns color 1 Blue
$ns color 2 Red

#Open the nam trace file
set nf [open out.nam w]
$ns namtrace-all $nf

#Define a 'finish’ procedure
proc finish {} {

.... same as before
¥

#Create four nodes
set nO [$ns node]
set n1 [$ns node]
set n2 [$ns node]
set n3 [$ns node]

#Create links between the nodes

$ns duplex-link $n0 $n2 1Mb 10ms DropTail
$ns duplex-link $n1 $n2 1Mb 10ms DropTail
$ns duplex-link $n3 $n2 1Mb 10ms SFQ

$ns duplex-link-op $n0 $n2 orient right-down
$ns duplex-link-op $n1 $n2 orient right-up
$ns duplex-link-op $n2 $n3 orient right

#Monitor the queue for the link between node 2 and
node 3
$ns duplex-link-op $n2 $n3 queuePos 0.5

#Create a UDP agent and attach it to node n0
set udp0 [new Agent/UDP]

$udpO set class_ 1

$ns attach-agent $n0 $udp0

Create a CBR traffic source and attach it to udpO
set cbrO [new Application/Traffic/CBR]

$cbr0 set packetSize_ 500 // byte

$cbr0 set interval _ 0.005

$cbr0 attach-agent $udp0

#Create a UDP agent and attach it to node nl
set udpl [new Agent/UDP]

$udpl set class_ 2

$ns attach-agent $n1 $udpl

example?2.tcl

Create a CBR traffic source and attach it to udpl
set cbrl [new Application/Traffic/CBR]

$cbrl set packetSize_ 500

$cbrl set interval _ 0.005

$cbrl attach-agent $udpl

#Create a Null agent (a traffic sink) and attach it to
node n3

set nullO [new Agent/Null]

$ns attach-agent $n3 $null0

#Connect the traffic sources with the traffic sink
$ns connect $udp0 $nullo
$ns connect $udpl $nullo

#Schedule events for the CBR agents

$ns at 0.5 "$cbr0 start"

$ns at 1.0 "$cbrl start”

$ns at 4.0 "$cbrl stop™

$ns at 4.5 "$cbr0 stop™

#Call the finish procedure after 5 seconds of simulation
time

$ns at 5.0 "finish"

#Run the simulation
$ns run

NS-2 Tutorial (3)

A ring topology with 7 nodes
Source node (Node 0) send CBR traffic over UDP during [0.5 sec, 4.5
sec] toward Node 3
Destination node (Node 3) receives it
All other nodes work as routers

Link between Node 1 and Node 2 downs at 1.0 sec and recovers at 2.0
sec

How to run
ns example3.tcl

What to learn

How to use node “array” and for loop in tcl script to model many nodes
How to simulate link failure

Observe all packets drop while the link fails

How to use DV (Distance Vector) routing

Observe if DV finds another path detouring the failed link

example3.tcl

#Create a simulator object
set ns [new Simulator]

#Tell the simulator to use dynamic routing
$ns rtproto DV

#Open the nam trace file
set nf [open out.nam w]
$ns namtrace-all $nf
#Define a 'finish' procedure
proc finish {} {

... same as before

}

#Create seven nodes
for {seti 0} {$i < 7} {incri}{
set n($i) [$ns node]
}
#Create links between the nodes
for {seti 0} {$i < 7} {incri}{
$ns duplex-link $n($i) $n([expr ($i+1)%07]) 1Mb
10ms DropTail
}

#Create a UDP agent and attach it to node n(0)
set udpO [new Agent/UDP]
$ns attach-agent $n(0) $udp0

Create a CBR traffic source and attach it to udpO
set cbrO [new Application/Traffic/CBR]

$cbr0 set packetSize_ 500

$cbr0 set interval _ 0.005

$cbr0 attach-agent $udp0

#Create a Null agent (a traffic sink) and attach it to
node n(3)

set null0 [new Agent/Null]

$ns attach-agent $n(3) $null0

#Connect the traffic source with the traffic sink
$ns connect $udpO $null0

#Schedule events for the CBR agent and the network
dynamics

$ns at 0.5 "$cbrO start”

$ns rtmodel-at 1.0 down $n(1) $n(2)

$ns rtmodel-at 2.0 up $n(1) $n(2)

$ns at 4.5 "$cbr0 stop™

#Call the finish procedure after 5 seconds of simulation
time

$ns at 5.0 "finish"

#Run the simulation
$ns run

NS-2 Tutorial (4)

Three source nodes (Nodes 0, 1, 2) send burst traffic via a

router (Node 3) toward the final destination (Node 4)
— Source nodes (Nodes 0, 1, 2) start and stop the burst traffic at 10 sec and
50 sec, respetively.
— Three sinks at the Destination node (Node 4) records the bandwidth of
three flows at every 0.5 sec.
— The recorded bandwidth (outO.tr, outl.tr, and out2.tr) is displayed by
Xgraph
How to run
— ns example4.tcl

What to learn
— How to generate burst traffic
— How to record the simulated data into files
— How to run Xgraph to visualize the recorded data

exampled.tcl

#Cr
set ns [new Simulator]

#Open the output files

set fO [open outO.tr w]

set f1 [open outl.tr w]

set f2 [open out2.tr w]

#Create 5 nodes

set nO [$ns node]

set n1 [$ns node]

set n2 [$ns node]

set n3 [$ns node]

set n4 [$ns node]

#Connect the nodes

$ns duplex-link $n0 $n3 1Mb 100ms DropTail
$ns duplex-link $n1 $n3 1Mb 100ms DropTail
$ns duplex-link $n2 $n3 1Mb 100ms DropTail
$ns duplex-link $n3 $n4 1Mb 100ms DropTail

natn a2 Q1
caLiwc a oiliiiv

#Define a 'finish' procedure
proc finish {} {
global fO f1 f2
close $f0
close $f1
close $f2
exec xgraph outO.tr outl.tr out2.tr -geometry 800x400 &
exit 0

#Define a procedure that attaches a UDP agent to a previously created node
#'node' and attaches an Expoo traffic generator to the agent with the
#characteristic values 'size' for packet size 'burst' for burst time,

#'idle’ for idle time and 'rate’ for burst peak rate. The procedure connects
#the source with the previously defined traffic sink 'sink’ and returns the
#source object.

proc attach-expoo-traffic { node sink size burst idle rate }

{
#Get an instance of the simulator
set ns [Simulator instance]

#Create a UDP agent and attach it to the node
set source [new Agent/UDP]
$ns attach-agent $node $source

#Create an Expoo traffic agent and set its configuration
parameters

set traffic [new Application/Traffic/Exponential]

$traffic set packetSize $size

$traffic set burst_time_ $burst

$traffic set idle_time_ $idle

$traffic set rate_ $rate

Attach traffic source to the traffic generator
$traffic attach-agent $source

#Connect the source and the sink

$ns connect $source $sink

return $traffic

exampled.tcl

#Define a procedure which periodically records the bandwidth received by the
#three traffic sinks sink0/1/2 and writes it to the three files f0/1/2.

proc record {} {

global sinkO0 sink1 sink2 f0 f1 f2

#Get an instance of the simulator

set ns [Simulator instance]

#Set the time after which the procedure should be
called again

set time 0.5

#How many bytes have been received by the traffic
sinks?

set bwO [$sinkO set bytes]

set bwl [$sinkl set bytes]

set bw2 [$sink2 set bytes]

#Get the current time

set now [$ns now]

#Calculate the bandwidth (in MBit/s) and write it to
the files

puts $f0 ""$now [expr $bw0/$time*8/1000000]"*

puts $f1 ""$now [expr $bwl/$time*8/1000000]"

puts $f2 ""$now [expr $bw2/$time*8/1000000]"*

#Reset the bytes values on the traffic sinks

$sink0 set bytes_ 0

$sinkl set bytes_ 0

$sink2 set bytes_ 0

#Re-schedule the procedure

$ns at [expr $now+$time] "'record"’

HCOr n thran +r ir olnl
TT\J'CGLC LUIITCT ualiiv oiil

set sink0 [new gent/LossMonltor]
set sink1 [new Agent/LossMonitor]
set sink2 [new Agent/LossMonitor]
$ns attach-agent $n4 $sink0
$ns attach-agent $n4 $sink1
$ns attach-agent $n4 $sink2

#Create three traffic sources

set source0 [attach-expoo-traffic $n0 $sink0 200 2s 1s 100k]
set sourcel [attach-expoo-traffic $n1 $sinkl1 200 2s 1s 200k]
set source? [attach-expoo-traffic $n2 $sink2 200 2s 1s 300k]

#Start logging the received bandwidth
$ns at 0.0 "record"

#Start the traffic sources

$ns at 10.0 "$sourceO start"

$ns at 10.0 "$sourcel start"

$ns at 10.0 "$source2 start"

#Stop the traffic sources

$ns at 50.0 "$source0 stop"

$ns at 50.0 "$sourcel stop"

$ns at 50.0 "$source2 stop"

#Call the finish procedure after 60 seconds
$ns at 60.0 *finish"'

#Run the simulation
$ns run

