
NS2 Tutorial

Chang-Gun Lee (cglee@snu.ac.kr)

Assistant Professor

The School of Computer Science and Engineering

Seoul National University

h dWhat we need
• Linux (e.g., RedHat 8.0) installed with full options
• Tcl/Tk (version 8.4.14)()
• otcl (version 1.12)
• TclCL (version 1 18)• TclCL (version 1.18)
• ns-2 (version 2.30)
• nam (version 1.11)
• Xgraph (version 12.1)g p ()
• Get all of them (piece by piece) from

www.isi.nsnam/ns (click “Download and Build ns)www.isi.nsnam/ns (click Download and Build ns)

Step 1: Tcl/Tk installp
1. Already done!

Step 2: otcl installp
1. Decompress

t f t l 1 12 t– tar zxvf otcl-src-1.12.tar.gz
2. Configure

– cd otcl-1.12
– ./configure --with-tcl=/usr/X11R6 --with-tcl-ver=8.4 --with-tk=/usr/X11R6
– If it complains that “tclInt.h” doesn’t exist”, copy tclInt*.h from tcl8.4.14/generic to

/usr/X11R6/include
3. Make

– cd otcl-1.12
– make (this will creat otclsh, owish, libotcl.a, libotcl.so)

4. Test
– cd otcl-1.12
– make test (skip!)(p)

5. Install (be the super user first)
– cd otcl-1.12
– make install (this will copy files to /usr/local/bin /usr/local/lib /usr/local/include)make install (this will copy files to /usr/local/bin, /usr/local/lib, /usr/local/include)

Step 3: TclCL installp
1. Decompress

t f t l l 1 18 t– tar zxvf tclcl-src-1.18.tar.gz
2. Configure

– cd tclcl-1.18
– ./configure --with-tcl=/usr/X11R6 --with-tcl-ver=8.4 --with-tk=/usr/X11R6 --with-tk-

ver=8.4
3. Make

– cd tclcl-1.18
– make (this will creat tcl2c++, libtclcl.a)

4. Install (be the super user first)
– cd tclcl-1.18
– make install (this will copy files to /usr/local/bin, /usr/local/lib, /usr/local/include)

Step 4: NS-2 install
1. Decompress

– tar zxvf ns-src-2.30.tar.gz
2. Configure

– cd ns-2.30
– ./configure --with-tcl=/usr/X11R6 --with-tcl-ver=8.4 --with-tk=/usr/X11R6 --with-tk-

ver=8.4
3 M k3. Make

– cd ns-2.30
– make

4 Test4. Test
– cd ns-2.30
– ./validate
– Note: if it complains that “Cannot load libotcl8.4.so”, copy otcl-1.12/libotcl.so to p , py

/usr/local/lib and add “usr/local/lib” to LD_LIBRARY_PATH by editing .bashrc
5. Install

– Copy ns to /usr/local/bin

Step 5: nam install
1. Get the binary release nam-1.11-linux-i386.tar.gz from

http://www.isi.edu/nsnam/nam/index.html
2. Decompressp

– tar xzvf nam-1.11-linux-i386.tar.gz
3. Install

– copy nam /usr/local/bin

Step 6: Xgraph install
1. Decompress

– tar xzvf xgraph-12.1.tar.gz
2. Configure

– cd xgraph-12.1
– ./configure

3. Make
d h– cd xgraph-12.1

– make
4. Install (be the super user)

cd xgraph 12 1– cd xgraph-12.1
– make install (this will copy xgraph to /usr/local/bin)

NS-2 Tutorial (1)
• Two nodes connected through a duplex link

– Source node send CBR traffic over UDP during the time interval [0.5
sec 4 5 sec]sec, 4.5 sec]

– Destination node receive it
• What we program

– example1.tcl: specify node topology and simulation scenario
• What we have to do

ns example1 tcl– ns example1.tcl
• What to learn

– How to define node and their connections
– How to use the existing protocol agents (e.g., UDP)
– How to use the application agents (e.g., CBR)
– How to run “nam” in the tcl script to view the simulation– How to run nam in the tcl script to view the simulation

example1.tcl
#Create a simulator object
set ns [new Simulator]

#Open the nam trace file

#Create a UDP agent and attach it to node n0
set udp0 [new Agent/UDP]
$ns attach-agent $n0 $udp0

#Open the nam trace file
set nf [open out.nam w]
$ns namtrace-all $nf

#Define a 'finish' procedure

Create a CBR traffic source and attach it to udp0
set cbr0 [new Application/Traffic/CBR]
$cbr0 set packetSize_ 500
$cbr0 set interval 0 005#Define a finish procedure

proc finish {} {
global ns nf
$ns flush-trace

#Close the trace file

$cbr0 set interval_ 0.005
$cbr0 attach-agent $udp0

#Create a Null agent (a traffic sink) and attach it to
node n1#Close the trace file

close $nf
#Execute nam on the trace file

exec nam out.nam &
exit 0

node n1
set null0 [new Agent/Null]
$ns attach-agent $n1 $null0

#Connect the traffic source with the traffic sinkexit 0
}

#Create two nodes
set n0 [$ns node]

#Connect the traffic source with the traffic sink
$ns connect $udp0 $null0

#Schedule events for the CBR agent
$ns at 0 5 "$cbr0 start"set n0 [$ns node]

set n1 [$ns node]

#Create a duplex link between the nodes
$ns duplex-link $n0 $n1 1Mb 10ms DropTail

$ns at 0.5 $cbr0 start
$ns at 4.5 "$cbr0 stop"
#Call the finish procedure after 5 seconds of simulation
time
$ns at 5 0 "finish"$ns duplex link $n0 $n1 1Mb 10ms DropTail $ns at 5.0 finish

#Run the simulation
$ns run

NS-2 Tutorial (2)
• Three nodes connected through duplex links

– Source node (Node 0) sends CBR traffic over UDP during the time
interval [0 5 sec 4 5 sec] via Node 2 toward the final destination Node 3interval [0.5 sec, 4.5 sec] via Node 2 toward the final destination Node 3

– Source node (Node 1) sends CBR traffic over UDP during the time
interval [1.0 sec, 4.0 sec] via Node 2 toward the final destination Node 3

– Router (Node 2) routes the traffic
– Destination node (Node 3) receive it

• How to runHow to run
– ns example2.tcl

• What to learn
– How to classify flows (visualize them with different colors)
– How to monitor a queue
– Observe unfair drop by DropTail queuep y p q
– Observe if SFQ (Stochastic Fair Queueing) can solve the unfairness

example2.tcl
#Create a simulator object
set ns [new Simulator]

#Define different colors for data flows

$ns duplex-link-op $n0 $n2 orient right-down
$ns duplex-link-op $n1 $n2 orient right-up
$ns duplex-link-op $n2 $n3 orient right

#Define different colors for data flows
$ns color 1 Blue
$ns color 2 Red

#Open the nam trace file

#Monitor the queue for the link between node 2 and
node 3
$ns duplex-link-op $n2 $n3 queuePos 0.5

#Open the nam trace file
set nf [open out.nam w]
$ns namtrace-all $nf

#Define a 'finish' procedure

#Create a UDP agent and attach it to node n0
set udp0 [new Agent/UDP]
$udp0 set class_ 1
$ns attach-agent $n0 $udp0#Define a finish procedure

proc finish {} {
…. same as before ….

}

$ns attach-agent $n0 $udp0

Create a CBR traffic source and attach it to udp0
set cbr0 [new Application/Traffic/CBR]
$cbr0 set packetSize 500 // byte

#Create four nodes
set n0 [$ns node]
set n1 [$ns node]
set n2 [$ns node]

$cbr0 set packetSize_ 500 // byte
$cbr0 set interval_ 0.005
$cbr0 attach-agent $udp0

#Create a UDP agent and attach it to node n1set n2 [$ns node]
set n3 [$ns node]

#Create links between the nodes
$ns duplex-link $n0 $n2 1Mb 10ms DropTail

#Create a UDP agent and attach it to node n1
set udp1 [new Agent/UDP]
$udp1 set class_ 2
$ns attach-agent $n1 $udp1

$ns duplex link $n0 $n2 1Mb 10ms DropTail
$ns duplex-link $n1 $n2 1Mb 10ms DropTail
$ns duplex-link $n3 $n2 1Mb 10ms SFQ

example2.tcl
Create a CBR traffic source and attach it to udp1
set cbr1 [new Application/Traffic/CBR]
$cbr1 set packetSize_ 500
$cbr1 set interval 0 005$cbr1 set interval_ 0.005
$cbr1 attach-agent $udp1

#Create a Null agent (a traffic sink) and attach it to
node n3node n3
set null0 [new Agent/Null]
$ns attach-agent $n3 $null0

#Connect the traffic sources with the traffic sink#Connect the traffic sources with the traffic sink
$ns connect $udp0 $null0
$ns connect $udp1 $null0

#Schedule events for the CBR agents#Schedule events for the CBR agents
$ns at 0.5 "$cbr0 start"
$ns at 1.0 "$cbr1 start"
$ns at 4.0 "$cbr1 stop"
$ns at 4 5 "$cbr0 stop"$ns at 4.5 $cbr0 stop
#Call the finish procedure after 5 seconds of simulation
time
$ns at 5.0 "finish"

#Run the simulation
$ns run

NS-2 Tutorial (3)
• A ring topology with 7 nodes

– Source node (Node 0) send CBR traffic over UDP during [0.5 sec, 4.5
sec] toward Node 3sec] toward Node 3

– Destination node (Node 3) receives it
– All other nodes work as routers
– Link between Node 1 and Node 2 downs at 1.0 sec and recovers at 2.0

sec
• How to runHow to run

– ns example3.tcl
• What to learn

– How to use node “array” and for loop in tcl script to model many nodes
– How to simulate link failure
– Observe all packets drop while the link failsp p
– How to use DV (Distance Vector) routing
– Observe if DV finds another path detouring the failed link

example3.tcl
#Create a simulator object
set ns [new Simulator]

#Tell the simulator to use dynamic routing

Create a CBR traffic source and attach it to udp0
set cbr0 [new Application/Traffic/CBR]
$cbr0 set packetSize_ 500
$cbr0 set interval 0 005#Tell the simulator to use dynamic routing

$ns rtproto DV

#Open the nam trace file
set nf [open out nam w]

$cbr0 set interval_ 0.005
$cbr0 attach-agent $udp0

#Create a Null agent (a traffic sink) and attach it to
node n(3)set nf [open out.nam w]

$ns namtrace-all $nf
#Define a 'finish' procedure
proc finish {} {

same as before

node n(3)
set null0 [new Agent/Null]
$ns attach-agent $n(3) $null0

#Connect the traffic source with the traffic sink… same as before ….
}

#Create seven nodes
for {set i 0} {$i < 7} {incr i} {

#Connect the traffic source with the traffic sink
$ns connect $udp0 $null0

#Schedule events for the CBR agent and the network
dynamicsfor {set i 0} {$i < 7} {incr i} {

set n($i) [$ns node]
}
#Create links between the nodes
for {set i 0} {$i < 7} {incr i} {

dynamics
$ns at 0.5 "$cbr0 start"
$ns rtmodel-at 1.0 down $n(1) $n(2)
$ns rtmodel-at 2.0 up $n(1) $n(2)
$ns at 4 5 "$cbr0 stop"for {set i 0} {$i < 7} {incr i} {

$ns duplex-link $n($i) $n([expr ($i+1)%7]) 1Mb
10ms DropTail
}

$ns at 4.5 $cbr0 stop
#Call the finish procedure after 5 seconds of simulation
time
$ns at 5.0 "finish"

#Create a UDP agent and attach it to node n(0)
set udp0 [new Agent/UDP]
$ns attach-agent $n(0) $udp0

#Run the simulation
$ns run

NS-2 Tutorial (4)
• Three source nodes (Nodes 0, 1, 2) send burst traffic via a

router (Node 3) toward the final destination (Node 4)
S d (N d 0 1 2) d h b ffi 10 d– Source nodes (Nodes 0, 1, 2) start and stop the burst traffic at 10 sec and
50 sec, respetively.

– Three sinks at the Destination node (Node 4) records the bandwidth of
three flows at every 0.5 sec.

– The recorded bandwidth (out0.tr, out1.tr, and out2.tr) is displayed by
Xgraphg ap

• How to run
– ns example4.tcl

• What to learn
– How to generate burst traffic
– How to record the simulated data into filesHow to record the simulated data into files
– How to run Xgraph to visualize the recorded data

example4.tcl
#Create a simulator object #Define a procedure that attaches a UDP agent to a previously created node#Create a simulator object
set ns [new Simulator]
#Open the output files
set f0 [open out0.tr w]
set f1 [open out1 tr w]

#Define a procedure that attaches a UDP agent to a previously created node
#'node' and attaches an Expoo traffic generator to the agent with the
#characteristic values 'size' for packet size 'burst' for burst time,
#'idle' for idle time and 'rate' for burst peak rate. The procedure connects
#the source with the previously defined traffic sink 'sink' and returns the
#source object.

tt h t ffi { d i k i b t idl t }set f1 [open out1.tr w]
set f2 [open out2.tr w]
#Create 5 nodes
set n0 [$ns node]
set n1 [$ns node]

proc attach-expoo-traffic { node sink size burst idle rate }
{

#Get an instance of the simulator
set ns [Simulator instance]

set n1 [$ns node]
set n2 [$ns node]
set n3 [$ns node]
set n4 [$ns node]
#Connect the nodes

#Create a UDP agent and attach it to the node
set source [new Agent/UDP]
$ns attach-agent $node $source

#Connect the nodes
$ns duplex-link $n0 $n3 1Mb 100ms DropTail
$ns duplex-link $n1 $n3 1Mb 100ms DropTail
$ns duplex-link $n2 $n3 1Mb 100ms DropTail
$ns duplex-link $n3 $n4 1Mb 100ms DropTail

#Create an Expoo traffic agent and set its configuration
parameters

set traffic [new Application/Traffic/Exponential]
$t ffi t k tSi $ i$ns duplex-link $n3 $n4 1Mb 100ms DropTail

#Define a 'finish' procedure
proc finish {} {
global f0 f1 f2

$traffic set packetSize_ $size
$traffic set burst_time_ $burst
$traffic set idle_time_ $idle
$traffic set rate_ $rate

global f0 f1 f2
close $f0
close $f1
close $f2
exec xgraph out0 tr out1 tr out2 tr -geometry 800x400 &

Attach traffic source to the traffic generator
$traffic attach-agent $source
#Connect the source and the sink
$ t $ $ i kexec xgraph out0.tr out1.tr out2.tr -geometry 800x400 &

exit 0
}

$ns connect $source $sink
return $traffic

}

example4.tcl
#Define a procedure which periodically records the bandwidth received by the #Create three traffic sinks and attach them to the node n4#Define a procedure which periodically records the bandwidth received by the
#three traffic sinks sink0/1/2 and writes it to the three files f0/1/2.
proc record {} {

global sink0 sink1 sink2 f0 f1 f2
#Get an instance of the simulator

#Create three traffic sinks and attach them to the node n4
set sink0 [new Agent/LossMonitor]
set sink1 [new Agent/LossMonitor]
set sink2 [new Agent/LossMonitor]
$ns attach agent $n4 $sink0set ns [Simulator instance]

#Set the time after which the procedure should be
called again

set time 0.5

$ns attach-agent $n4 $sink0
$ns attach-agent $n4 $sink1
$ns attach-agent $n4 $sink2

#Create three traffic sources#How many bytes have been received by the traffic
sinks?

set bw0 [$sink0 set bytes_]
set bw1 [$sink1 set bytes_]

#Create three traffic sources
set source0 [attach-expoo-traffic $n0 $sink0 200 2s 1s 100k]
set source1 [attach-expoo-traffic $n1 $sink1 200 2s 1s 200k]
set source2 [attach-expoo-traffic $n2 $sink2 200 2s 1s 300k]

set bw2 [$sink2 set bytes_]
#Get the current time
set now [$ns now]
#Calculate the bandwidth (in MBit/s) and write it to

#Start logging the received bandwidth
$ns at 0.0 "record"
#Start the traffic sources
$ns at 10.0 "$source0 start"

the files
puts $f0 "$now [expr $bw0/$time*8/1000000]"
puts $f1 "$now [expr $bw1/$time*8/1000000]"
puts $f2 "$now [expr $bw2/$time*8/1000000]"

$ns at 10.0 "$source1 start"
$ns at 10.0 "$source2 start"
#Stop the traffic sources
$ns at 50.0 "$source0 stop"

#Reset the bytes_ values on the traffic sinks
$sink0 set bytes_ 0
$sink1 set bytes_ 0
$sink2 set bytes_ 0

$ns at 50.0 "$source1 stop"
$ns at 50.0 "$source2 stop"
#Call the finish procedure after 60 seconds
$ns at 60.0 "finish"

#Re-schedule the procedure
$ns at [expr $now+$time] "record"

}
#Run the simulation
$ns run

