
Introduction to Java Serialization

1. Introduction

Serialization is the conversion of the state of an object into a byte stream; deserialization does the opposite.

Stated differently, serialization is the conversion of a Java object into a static stream (sequence) of bytes,

which we can then save to a database or transfer over a network.

2. Serialization and Deserialization

The serialization process is instance-independent; for example, we can serialize objects on one platform and

deserialize them on another. Classes that are eligible for serialization need to implement a special

marker interface, Serializable.

Both ObjectInputStream and ObjectOutputStream are high level classes that

extend java.io.InputStream and java.io.OutputStream, respectively. ObjectOutputStream can write primitive

types and graphs of objects to an OutputStream as a stream of bytes. We can then read these streams

using ObjectInputStream.

The most important method in ObjectOutputStream is:

public final void writeObject(Object o) throws IOException;Copy

This method takes a serializable object and converts it into a sequence (stream) of bytes. Similarly, the most

important method in ObjectInputStream is:

public final Object readObject()

 throws IOException, ClassNotFoundException;Copy

This method can read a stream of bytes and convert it back into a Java object. It can then be cast back to the

original object.

Let’s illustrate serialization with a Person class. Note that static fields belong to a class (as opposed to an

object) and are not serialized. Also, note that we can use the keyword transient to ignore class fields

during serialization:

public class Person implements Serializable {

 private static final long serialVersionUID = 1L;

 static String country = "ITALY";

 private int age;

 private String name;

 transient int height;

 // getters and setters

}

The test below shows an example of saving an object of type Person to a local file, and then reading the

value back in:

@Test

public void whenSerializingAndDeserializing_ThenObjectIsTheSame() ()

 throws IOException, ClassNotFoundException {

 Person person = new Person();

 person.setAge(20);

 person.setName("Joe");

 FileOutputStream fileOutputStream

 = new FileOutputStream("yourfile.txt");

 ObjectOutputStream objectOutputStream

 = new ObjectOutputStream(fileOutputStream);

 objectOutputStream.writeObject(person);

 objectOutputStream.flush();

 objectOutputStream.close();

 FileInputStream fileInputStream

 = new FileInputStream("yourfile.txt");

 ObjectInputStream objectInputStream

 = new ObjectInputStream(fileInputStream);

 Person p2 = (Person) objectInputStream.readObject();

 objectInputStream.close();

 assertTrue(p2.getAge() == person.getAge());

 assertTrue(p2.getName().equals(person.getName()));

}

We used ObjectOutputStream for saving the state of this object to a file using FileOutputStream. The

file “yourfile.txt” is created in the project directory. This file is then loaded

using FileInputStream. ObjectInputStream picks this stream up and converts it into a new object called p2.

Finally, we’ll test the state of the loaded object, and ensure it matches the state of the original object.

Note that we have to explicitly cast the loaded object to a Person type.

3. Java Serialization Caveats

There are some caveats which concern serialization in Java.

3.1. Inheritance and Composition

When a class implements the java.io.Serializable interface, all its sub-classes are serializable as well.

Conversely, when an object has a reference to another object, these objects must implement

the Serializable interface separately, or else a NotSerializableException will be thrown:

public class Person implements Serializable {

 private int age;

 private String name;

 private Address country; // must be serializable too

}

If one of the fields in a serializable object consists of an array of objects, then all of these objects must be

serializable as well, or else a NotSerializableException will be thrown.

3.2. Serial Version UID

The JVM associates a version (long) number with each serializable class. We use it to verify that the

saved and loaded objects have the same attributes, and thus are compatible on serialization.

Most IDEs can generate this number automatically, and it’s based on the class name, attributes, and

associated access modifiers. Any changes result in a different number, and can cause

an InvalidClassException.

If a serializable class doesn’t declare a serialVersionUID, the JVM will generate one automatically at run-

time. However, it’s highly recommended that each class declares its serialVersionUID, as the generated one

is compiler dependent and thus may result in unexpected InvalidClassExceptions.

3.3. Custom Serialization in Java

Java specifies a default way to serialize objects, but Java classes can override this default behavior. Custom

serialization can be particularly useful when trying to serialize an object that has some unserializable

attributes. We can do this by providing two methods inside the class that we want to serialize:

private void writeObject(ObjectOutputStream out) throws IOException;Copy

and

private void readObject(ObjectInputStream in)

 throws IOException, ClassNotFoundException;Copy

With these methods, we can serialize the unserializable attributes into other forms that we can serialize:

public class Employee implements Serializable {

 private static final long serialVersionUID = 1L;

 private transient Address address;

 private Person person;

 // setters and getters

 private void writeObject(ObjectOutputStream oos)

 throws IOException {

 oos.defaultWriteObject();

 oos.writeObject(address.getHouseNumber());

 }

 private void readObject(ObjectInputStream ois)

 throws ClassNotFoundException, IOException {

 ois.defaultReadObject();

 Integer houseNumber = (Integer) ois.readObject();

 Address a = new Address();

 a.setHouseNumber(houseNumber);

 this.setAddress(a);

 }

}
public class Address {

 private int houseNumber;

 // setters and getters

}

We can run the following unit test to test this custom serialization:

public void whenCustomSerializingAndDeserializing_ThenObjectIsTheSame()

 throws IOException, ClassNotFoundException {

 Person p = new Person();

 p.setAge(20);

 p.setName("Joe");

 Address a = new Address();

 a.setHouseNumber(1);

 Employee e = new Employee();

 e.setPerson(p);

 e.setAddress(a);

 FileOutputStream fileOutputStream

 = new FileOutputStream("yourfile2.txt");

 ObjectOutputStream objectOutputStream

 = new ObjectOutputStream(fileOutputStream);

 objectOutputStream.writeObject(e);

 objectOutputStream.flush();

 objectOutputStream.close();

 FileInputStream fileInputStream

 = new FileInputStream("yourfile2.txt");

 ObjectInputStream objectInputStream

 = new ObjectInputStream(fileInputStream);

 Employee e2 = (Employee) objectInputStream.readObject();

 objectInputStream.close();

 assertTrue(

 e2.getPerson().getAge() == e.getPerson().getAge());

 assertTrue(

 e2.getAddress().getHouseNumber() == e.getAddress().getHouseNumber());

}

In this code, we can see how to save some unserializable attributes by serializing Address with custom

serialization. Note that we must mark the unserializable attributes as transient to avoid

the NotSerializableException.

