
Lex
Rule based Programming Language

1

Usage

Lex Compiler C Compiler
.l file .c file executable

Input stream

tokens

lex filename. l
filename. l lex.yy.c gcc –lfl lex.yy.c a.out

2

./a.out < inputFile

Structure of a Lex Program

Declaration
%%
Translation rules
%%
Auxiliary Procedures

3

Translation Rules

Pattern(Regular Expression) Action

Eg.
1 {printf(“one”);}

4

Operators and Characters in the Rules
Meta Character Matches

. Any character except new line

\n New line

[] Character class [any one character within] – eg. [xy], [x-z]

[^x] Any character but x

x* 0 or more occurrences of the preceding expression x

x+ 1 or more occurrences of the preceding expression x

x? 0 or 1 occurrence of the preceding expression x

^x Line beginning with x

x$ Line ending with x

a|b Expression a or expression b

(ab)+ 1 or more copies of “ab” together

“a+b” Literal “a+b” [interpreted as is]

\x x, if x is a lex operator – eg. \{, \[, *

x{m,n} m to n occurrences of the preceding expression x

5

Pattern Matching Examples

6

Declaration
Pattern
name pattern

Eg.
space [\t]
ws {space}+
letter
digit
cVariable

C
• Variables
• Functions
• Header file inclusion
Eg.
%{

int count = 0;
%}

7

Auxiliary Procedures
• C functions

Predefined Functions and Variables

8

Default Program with %%

9

Sample Program – count number of lines

%{
int numOfLines = 0;

%}
%%
\n numOfLines++;
. ;
%%
void main(){

yylex();
printf(“Number of lines = %d”, numOfLines);

}

10

