
Dynamic Programming - Exercise

1. Given two strings s1 and s2, implement an algorithm to find the longest common subsequence

between s1 and s2.

Function Prototype: char* LCSlength(char *s1, char *s2);

2. Given two strings s1 and s2, implement an algorithm to identify the longest common subsequence

between s1 and s2 by maintaining only length information and not using any other indication for

the source of the least length.

Function Prototype: char* LCS(char *s1, char *s2);

3. Given two strings s1 and s2, implement a bottom-up dynamic programming algorithm to identify

a longest common subsequence between s1 and s2 and determine its length by maintaining only

the recent two rows of the direction table.

Function Prototype: char* LCS(char *s1, char *s2);

4. Given two strings s1 and s2, implement an algorithm to print all the longest common subsequences

between s1 and s2.

Function Prototype: void allLCS(char *s1, char *s2);

5. Implement an algorithm to print the way in which ‘n’ matrices to be multiplied in sequence should

be parenthesized so that the number of multiplications is the maximum. Also, print the

intermediate tables generated in this process.

Function Prototype: unsigned long long int MCMmaxParanthesize(int D[], int n);

where, D is an array containing dimensions of the n matrices.

6. Consider the following recurrence relation:

𝐶(𝑛, 𝑘) =

{

0, 𝑛 < 0 𝑜𝑟 𝑘 < 0
1, 𝑘 = 1 𝑜𝑟 𝑘 = 𝑛

𝐶(𝑛 − 1, 𝑘 − 1) + 𝐶(𝑛 − 1, 𝑘), 𝑛 𝑖𝑠 𝑜𝑑𝑑

𝐶(𝑛 − 2, 𝑘 − 2) + 𝐶(𝑛 − 2, 𝑘), 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

Given n and k, implement a dynamic programming based algorithm to perform the same.

Function Prototype: unsigned long int compute(int n, int k);

7. Dimensions of an image I is a pair (height of I, width of I). Consider any two images, referred as

Im and In, whose dimensions are denoted by (hm, wm) and (hn, wn) respectively. A bi-image

compression technique compresses two images into a single image by embedding Im on In. The

compression technique takes Ɵ(wm * hn) time. Consider an image R, obtained by the compression

of Im and In. The dimension of R is (MAX{hm, hn}, MAX{wm, wn}). For example, if the dimension

of I1 is (200, 500) and that of I2 is (150, 320), then the dimension of R (obtained by compressing

I1 and I2, referred as <I1, I2>) is (200, 500), and the time taken for compression is around a constant

times 500 * 150. Given the dimensions of ‘n’ images sequenced from 1 to ‘n’ based on the time at

which they were captured, implement an algorithm to print an order for compressing pairs of

images (using the aforementioned compression technique) in such a way that the indices of the

images in the output is in an increasing order and the time taken is the least of all such possible

orderings. For example, a sequence of 3 images I1, I2, I3 should not be ordered as <<I2, I1>, I3>,

even if it takes the least time since the indices are not in an increasing order. If the dimensions of

I1, I2, I3 are (20, 11), (30, 10) and (15, 50) respectively, the algorithm should return <I1, <I2, I3>>,

indicating that I2 should be compressed with I3 and then I1 with the image resulting from the

previous compression, the reason being the time taken for this order of compression is less

compared to that of the other possible order.

Function Prototype: void imageOrder(struct pair D[], int n);

