Linked List - Exercise

1) Polynomial Manipulation:
Consider a polynomial represented using a linked list with each node containing each term of the
polynomial. Hence the structure of a node (term) is as follows:

Coefficient Exponent Link

For easing arithmetic operation, the nodes are arranged in decreasing order of their exponent. For
example a polynomial P(x) = 7x* + 15x° - 2x° + 9 is represented as:

HEAD

Perform the following operations:

a) Create a polynomial by inserting terms considering the following cases:
1) Terms are input in decreasing order of their exponents
i1) Terms are input in any order of their exponents
Note: terms should be arranged in decreasing order of their exponent

Function Declaration: struct Node * createPolynomial(struct Node * P, int coeff, int exp);
b) Given two polynomials, implement a C function to add the two polynomials.

Function Declaration: struct Node * addPolynomial(struct Node * polyl, struct Node * poly2);

Sample:

Input:
polyl: Gx*+2x* —4x2+7)
3lal [T213] 1742 T"70
poly2: (x7+2x% + 5x° + 4x% — 5x)
17 T 205 177 53] 742 501

Output: (x7+2x>+3x*+ 7x3 - 5x + 7)
1170 1T71215 314l T7130 7511 770

2) After Kth Largest:
Given an increasing order sorted singly linked list and an integer k > 0, write a function
(afterKthLargest) to return a list of all nodes occurring after the k'™ largest element in the list. The
order of elements in the resultant list should be the same as that in the input list.




Function Declaration: struct Node* afterKthLargest(struct Node * head, int k);

Sample:
Input: 1 222>4->8>9->12,k=3

Output: 9 > 12

Input: 1 >22>4>8>9->12,k=5
Output: 4 > 8 2> 9 > 12

Input: 1 222>4->8->9->12,k=10
Output: 1 222>4>8>9->12

Input: 1 >22>4>8>9->12,k=1
Output: NULL

3) Remove Duplicates:
Given a singly linked list, write a function (removeDuplicates) to remove all elements that occur
more than once in the list. The order of elements in the resultant list should be the same as that in
the input list.
Function Declaration: struct Node* removeDuplicates(struct Node * head);
Sample:
Input: 1 >2>4->2->9->3
Output: 1 >4 >9 >3

Input: 1 22242102923
Output: 1 222>4-2>10>9->3

Input: 1 22>12>210>8>2->1
Output: 10 > 8

Input: 1 2221212122
Output: NULL



