
Recursion – Spot Question

Consider an ordering of numbers from ‘i’ to ‘j’ (1 ≤ 𝑖, 𝑗 ≤ 𝑛) with ‘i’ as the first number and ‘j’
as the last number. The intermediate numbers (if any) in the ordering can be obtained from an n×n
matrix S, containing numbers ranging from 1 to n, by recursively finding the successor of the first
number till the successor is the last number. The successor of ‘i’ in the ordering of numbers from
‘i’ to ‘j’ is:
𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑖, 𝑗)

= ൜
𝑁𝐼𝐿, 𝑆[𝑖, 𝑗] = 𝑗 𝑜𝑟 𝑆[𝑖, 𝑗] = 𝑘, 𝑘 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑠𝑜 𝑓𝑎𝑟 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑡𝑎𝑟𝑡

𝑆[𝑖, 𝑗], 𝑆[𝑖, 𝑗] ≠ 𝑗 𝑎𝑛𝑑 𝑆[𝑖, 𝑗] ≠ 𝑘, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 𝑖𝑛 𝑡ℎ𝑒 𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑠𝑜 𝑓𝑎𝑟 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑡𝑎𝑟𝑡

Here, S[i,j] = j indicates that we have determined the ordering and S[i,j] = k indicates that there is
no valid ordering from ‘i’ to ‘j’. Given S, i and j, implement an algorithm to determine the ordering
from ‘i’ to ‘j’.
Function Prototype: int* ordering(int **S, int i, int j);

Sample:

Input:
S =

1 2 2 3 4
5 3 4 3 1
4 1 3 2 5
2 5 3 4 1
3 4 1 1 5

i = 1, j = 3, Output: 1 -> 2 -> 4 -> 3
i = 1, j = 2, Output: 1 -> 2
i = 1, j = 4, Output: No ordering => 1 -> 3 -> 2 -> 3 (available in ordering)
i = 3, j = 2, Output: 3 -> 1 -> 2
i = 2, j = 2, Output: 2 -> 3 -> 1 -> 2
i = 1, j = 5, Output: No ordering => 1 -> 4 -> 1 (available in ordering)
i = 2, j = 3, Output: 2 -> 4 -> 3

