
Shell Scripts and Awk

Tim Love tpl@eng.cam.ac.uk

February 26, 2009

For those who have written programs before and have used Unix from the command line

Contents
1 Shell Programming 1

1.1 Wildcard characters . 2
1.2 Arguments from the command line . 2
1.3 Constructions . 2
1.4 Quoting and special characters . 3

2 Input/Output and Redirection 4

3 Shell Variables, Aliases and Functions 5
3.1 Variables . 5
3.2 Arrays . 6
3.3 Aliases . 6
3.4 Functions . 6

4 Some useful shell and Unix commands 7
4.1 Shell commands . 7
4.2 Unix accessories . 7

5 Exercises 8

6 Answers to examples 9

7 Customising 11

8 Shell Creation 11

9 Advanced Features and Speed-ups 12
9.1 Signals and Temporary Files . 13

10 Awk 14

11 References 15

Copyright c©2009 by T.P. Love. This document may be copied freely for the purposes of
education and non-commercial research. Cambridge University Engineering Department,
Cambridge CB2 1PZ, England.

1

1 Shell Programming
At the heart of Unix is a kernel whose routines aren’t easy to use directly. There are

also many pre-written programs (ls to list files, etc). They’re easier to use, but they don’t
understand the use of ’*’ as a wildcard character, and besides, you need some sort of
editor when you type commands in if you’re going to use the command line. The ‘shell’
is the interface between the user and the system. The shell isn’t only a line editor and
a command line interpreter that understands wildcards, it’s also a language with variables,
arrays, functions and control structures. Command lines can be put into a file and executed.
These so-called “shell scripts” can quickly be written and tested and should be tried in
association with other standard unix utilities before embarking on a higher level language,
at least for prototyping purposes.

Various text-based shells are in use. sh, the Bourne
Shell, is the oldest. The C-shell (csh) has many use-
ful features lacking from sh but isn’t that good for pro-
gramming in. The Korn Shell (ksh) and the (very sim-
ilar) POSIX shell are developments of sh that incorpo-
rates many csh features. bash is similar and is freely
available (it’s the default on linux and MacOS X). This
document is aimed at bash users on CUED’s Teaching
System, though non-csh users elsewhere shouldn’t have
any problems.

Writing a shell script is easy - start up your editor
with a file called try then type a few harmless commands into this file, one per line. For
example

hostname
date
ls

then save it as text. You want to make this file executable, so in the terminal window
type ‘chmod u+x try’, adding eXecute permission for the User. Run this script by
typing its name (on some systems you may need to type ‘./try’ - the ’.’ is shorthand for
’the current directory’). You should see the machine’s name, the date and a list of files.

Even scripts as simple as this can save on repetitive typing, but much more can be easily
achieved.

1.1 Wildcard characters
The * and ? characters have a special meaning to the shell when used where filenames are
expected. If you have files called bashful, sneezy and grumpy in your directory and
you type

ls *y

you’ll list sneezy and grumpy because * can represent any number of characters (except
an initial ’.’). ? represents a single character, so

ls *u?

will only print filenames whose penultimate letter is u.

1.2 Arguments from the command line
It is easy to write a script that takes arguments (options) from the command line. Type this
script into a file called args.

2

echo this $0 command has $# arguments.
echo They are $*

The echo command echoes the rest of the line to the screen by default. Within a
shell script, $0 denotes the script’s name, $1 denotes the first argument mentioned on the
command line and so on. Make the script executable then try it out with various arguments.
For example, if you type

args first another

then

• $# would be replaced by 2, the number of arguments,

• $0 would be substituted by args,

• $* would be substituted by first another, (‘*’ having a wildcard meaning)

1.3 Constructions
The shell has loop and choice constructs. These are described in the shell’s manual page
(type man bash on Linux or MacOS). Here are some examples. Type them into a file to
see what they do, or copy-paste the programs onto the command line. Note that after a #
the rest of the line isn’t executed. These comment lines are worth reading.

Example 0 : While loop. Keeping looping while i is less than 10
The first line creates a variable. Note that to read a
variable you need to put a ’$’ before its name

i=0
while [$i -lt 10]
do

echo i is $i
let i=$i+1

done

Example 1 : While loop.
This script keeps printing the date. ’true’ is a command
that does nothing except return a true value.
Use ˆC (Ctrl-C) to stop it.

while true
do

echo "date is"
date

done

example 2: For Loop.
Do a letter, word and line count of all the files in
the current directory.
The ‘*’ below is expanded to a list of files. The
variable ‘file’ successively takes the value of
these filenames. Preceding a variable name by ‘$’
gives its value.

for file in *
do

echo "wc $file gives"
wc $file

done

3

Example 3: If.
like the above, but doesn’t try to run wc on directories

for file in *
do

if [! -d $file] #ie: if $file isn’t a directory
then

echo "wc $file gives"
wc $file

else
echo "$file is a directory"

fi
done

Example 4 : Case - a multiple if
Move to the user’s home directory
cd
for file in .?*
do

#Now check for some common filenames.
case $file in

.kshrc) echo "You have a Korn Shell set-up file";;

.bashrc) echo "You have a Bash Shell set-up file";;

.Xdefaults) echo "You have an X resource file";;

.profile) echo "You have a shell login file";;
esac

done

1.4 Quoting and special characters
We’ve already met a number of symbols that have a special meaning to the shell. Not yet
mentioned are braces ({ .. }) which are use to surround variable names when it’s not
clear where they end. For example, if you want to want to print the value of i with “ed”
added on the end, you could use echo ${i}ed.

Putting the symbols in single quotes disables their special meaning. Using double
quotes disables some but not others. Here are some examples using quotes. Try them
and see if they work as you expect.

echo ’{ * $ $xyz #’
echo " * $ $xyz ’ # /"

Single special characters can be disabled by preceding them with a ’\’ character, so to print
a quotemark you can use echo \"

2 Input/Output and Redirection
Unix processes have standard input, output and error channels. By default, standard input
comes from the keyboard and standard output and error go to the screen, but redirecting is
simple. Type

date

and the date will be shown on screen, but type

date > out

and the output goes into the file called out.

4

hostname >> out

will append hostname’s output to the file out. stderr (where error message go) can
also be redirected. Suppose you try to list a non-existent file (blah, say)

ls blah

You will get an error message ‘blah not found’. There’s a file on all unix systems
called /dev/null, which consumes all it’s given. If you try

ls blah > /dev/null

you still wouldn’t get rid of the error message because, not surprisingly, the message is
being sent to stderr not stdout, but

ls blah 2>/dev/null

redirecting channel 2, stderr, will do the trick.
You can also redirect output into another process’s input. This is done using the ‘|’

character (often found above the <Return> key). Type ‘date | wc’ and the output
from date will be ‘piped’ straight into a program that counts the number of lines, words
and characters in its input. cat is a program that given a filename prints the file on-screen,
so if you have a text-file called text you can do cat text | wc or wc < text in-
stead of the usual wc text to count the contents of the file.

Standard output can also be ‘captured’ and put in a variable. Typing

d=$(date)

will set the variable d to be whatever string the command date produces. The use
of $() to do this supercedes the use of backquotes (i.e. d=‘date‘) in older shells.
$(<datafile) is a faster way of doing $(cat datafile) to put the contents of a
file into a variable.

If you want to print lots of lines of text you could use many echo statements. Alterna-
tively you could use a here document

cat<<END
Here is a line of text
and here is another line.
END

The cat command uses as its input the lines between the END words (any word could be
used, but the words have to be the same).

If you want to read from a file a line at a time (or want to get input from the keyboard)
use read. You can use one of the methods below – the second may be much the faster.

echo Reading /etc/motd using cat
cat /etc/motd | while read line
do

echo "$line"
done

echo Reading /etc/motd using exec redirection
exec 0</etc/motd
while read line
do

echo "$line"
done

5

3 Shell Variables, Aliases and Functions

3.1 Variables
The shell maintains a list of variables, some used by the shell to determine its operation
(for instance the PATH variable which determines where the shell will look for programs),
some created by the user.

A shell variable can be given a type (just as variables in Java or Fortran can), but this
isn’t necessary. Typing

pix=/usr/lib/X11/bitmaps

(note: no spaces around the ‘=’ sign) creates a variable ‘pix’ whose value can be accessed
by preceding the name with a ‘$’. ‘cd $pix’ will take you to a directory of icons. If you
type

pix=8

then pix will be treated as a number if the context is appropriate. The let command built
into the shell performs integer arithmetic operations. It understands all the C operators
except for ++ and −−. The typeset command can be used to force a variable to be an
integer, and can also be used to select the base used to display the integer, so

pix=8
let "pix=pix<<2"
echo $pix
typeset -i2 pix
echo $pix

will print 32 then 2#100000 onscreen. The let command (note that $ signs aren’t nec-
essary before the operands) uses C’s << operator to shift bits 2 to the left and the typeset
command makes pix into a base 2 integer.

typeset can do much else too. Look up the shell man page for a full list. Here are
just a few examples

You can control the how many columns a number occupies and whether
the number is right or left justified. The following
typeset command right-justifies j in a field of width 7.
j=1
typeset -R7 j
echo "($j)"

Variables can be made read-only. This j=2 assignment causes an error.
typeset -r j
j=2

String variables can be made upper or lower case.
string=FOO
echo $string
typeset -l string
echo $string

3.2 Arrays
The Korn shell and bash support one-dimensional arrays. These needn’t be defined be-
forehand. Elements can be assigned individually (for example name[3]=diana) or en
masse.

6

colors[1]=red
colors[2]=green
colors[3]=blue

echo The array colors has ${#colors[*]} elements.
echo They are ${colors[*]}

3.3 Aliases
Aliases provide a simple mechanism for giving another name to a command.

alias mv="mv -i"

runs mv -i whenever the mv command is run. Typing alias gives a list of active aliases.
Note that only the first word of each command can be replaced by the text of an alias.

3.4 Functions
Functions are much as in other high level languages. Here’s a simple example of a script
that creates a function, then calls it.

#takes 3 args; a string, the number of the target word in the string
#and which chars in that field you want. No error checking done.
function number {

echo $1 | cut -d’ ’ -f$2 | cut -c $3
}

echo -n "Percentage is "
the next line prints characters 7-8 of word 1 in the supplied string
by calling the above function
number "%Corr=57 Acc=47.68 Fred" 1 7-8

echo -n "Acc is "
number "%Corr=57 Acc=47.68 Fred" 2 5-9

4 Some useful shell and Unix commands
To become fluent writing shell scripts you need to know about common shell commands
(as shown earlier) but you also need to be aware of some common unix commands.

4.1 Shell commands
See the ksh or sh-posix man page for more info on these. In bash you can use the
help command.

alias :- to list aliases

let :- to do maths. Eg:- let x=2*4-5 ; echo $x

set :- to list the current variables and their values.

typeset -f :- to list functions

typeset -i :- to list integer variables

which :- to find where a program is (in some shells you use whence instead)

7

4.2 Unix accessories
See the corresponding man page for more info on these. Note that many of the commands
have dozens of options that might save you needing to write code.

wc:- This counts words lines and characters. To count the number of files in a directory,
try ls | wc -l

grep:- ‘grep Kwan /etc/passwd’ prints all lines in /etc/passwd that include
‘Kwan’. The return value indicates whether any such lines have been found.

sed:- a stream editor. Doing ls | sed s/a/o/g will produce a listing where all
the ’a’ characters become ’o’. Numerous tricks and tutorials are available from the
Handy one-liners for SED1 file.

basename:- Strips the directory and (optionally) suffix from a filename.

tr:- Translates one set of characters to another set. For example, try

echo "date" | tr d l

The following does case conversion

echo LaTeX | tr ’[:upper:]’ ’[:lower:]’

You can also use it as follows, “capturing” the output in a variable

old="LaTeX"
new=$(echo $old | tr ’[:upper:]’ ’[:lower:]’)

test:- This program can be used to check the existence of a file and its permissions, or
to compare numbers and strings. Note that ‘ if [-f data3]’ is equivalent
to ‘ if test -f data3’; both check for a file’s existence, but the [...] con-
struction is faster – it’s a builtin. Note that you need spaces around the square brack-
ets. Some examples,

if [$LOGNAME = tpl] # Did the user log in as tpl?
if [$num -eq 6] # Is the value of num 6?
if [$(hostname) = tw000] # Does hostname produce ‘tw000’?

i.e. is that the machine name?

sort:- ‘ls -l | sort -nr +4’ lists files sorted according to what’s in column 4 of
ls -l’s output (their size, usually).

cut:- Extracts characters or fields from lines. cut -f1 -d’:’ < /etc/passwd
prints all the uid’s in the passwd file. The following code shows a way to extract
parts of a filename.

filename=/tmp/var/program.cc

b=$(basename $filename)
prefix=$(echo $b | cut -d. -f 1)
suffix=$(echo $b | cut -d. -f 2)

find:- finds files in and below directories according to their name, age, size, etc.

1http://www-h.eng.cam.ac.uk/help/tpl/unix/sed.html

8

5 Exercises
Suppose in a directory that you wanted to change all the filenames ending in .f77 so that
they instead ended in .f90. How would you go about it?

If you’re new to Unix you may need to find out how to change filenames. Typing
apropos filename will list the programs and routines whose summaries mention
filename. Alas, the most useful command isn’t mentioned there. Typing apropos
rename lists mv which is what you need.

Maybe next you might try “mv *.f77 *.f90”. Alas, this won’t work - the shell
will replace *.f77 by a list of filenames and the resulting command will fail. You need to
use a loop of some sort. You also need a way to remove a suffix (look up basename)
and how to add a new suffix. It’s worth experimenting with a single name first. Do
filename=test.f77 and see if you can produce a test.f90 string from $filename
. One solution is

for filename in *.f77
do

b=$(basename $filename .f77)
mv $filename $b.f90

done

Here are some more exercises with useful man pages suggested. None of the solutions
to these should be much more than a dozen lines long. Answers to some of these are in the
next section.

1. Change the args script supplied earlier so that if no argument is provided, “They
are” isn’t printed, and if exactly 1 argument is provided, “... 1 argument” rather than
“... 1 arguments” is printed (use if)

2. Read in two numbers from the keyboard and print their sum (see the read, echo
and let commands in the shell manual page).

3. Write a shell script that given a person’s uid, tells you how many times that person is
logged on. (who, grep, wc)

4. Write a shell script called lsdirs which lists just the directories in the current
directory (test).

5. Write a shell script called see taking a filename name as argument which uses ls if
the file’s a directory and more if the file’s otherwise (test)

6. Write a shell script that asks the user to type a word in, then tells the user how long
that word is. (read, wc)

7. In many versions of unix there is a -i argument for cp so that you will be prompted
for confirmation if you are about to overwrite a file. Write a script called cpi which
will prompt if necessary without using the -i argument. (test)

8. Write a shell script that takes a uid as an argument and prints out that person’s name,
home directory, shell and group number. Print out the name of the group correspond-
ing to the group number, and other groups that person may belong to. (groups,
awk, cut. Also look at /etc/passwd and /etc/groups).

9. Sort /etc/passwd using the uid (first field) as the key. (sort)

10. Suppose that you want to write the same letter to many people except that you want
each letter addressed to the senders personally. This mailmerge facility can be created
using a shell script. Put the names of the recipients (one per line) in a file called

9

names, create a texfile called template which has NAME wherever you want the
person’s name to appear and write a script (using sed) to produce a temporary file
called letter from the template file.

6 Answers to examples
Note that these script begin with a line saying #!/bin/sh. This will force the script to
be interpreted by the Posix shell even if the user is using another, incompatible, type of
shell. Your system might require a different initial line. If you leave the line out, the user’s
current shell will be used.

• Arguments

#!/bin/sh
if [$# = 1]
then

string="It is "
ending=""

else
string="They are "
ending="s"

fi
echo This $0 command has $# argument${ending}.
if [$# != 0]
then
echo $string $*
fi

• Adding Numbers

#!/bin/sh
echo "input a number"
read number1

echo "now input another number"
read number2

let answer=$number1+$number2
echo "$number1 + $number2 = $answer"

• Login Counting Script

#!/bin/sh
times=$(who | grep $1 | wc -l)
echo "$1 is logged on $times times."

• List Directories

#!/bin/sh
for file in $*
do

if [-d $file]
then

10

ls $file
fi

done

• See Script

#!/bin/sh
for file in $*
do

if [-d $file]
then

echo "using ls"
ls $file

else
more $file

fi
done

• Word-length script

#!/bin/sh
echo "Type a word"
read word
echo $word is $(echo -n $word | wc -c) letters long
echo or $word is ${#word} letters long

• Safe Copying

#!/bin/sh
if [-f $2]
then

echo "$2 exists. Do you want to overwrite it? (y/n)"
read yn
if [$yn = "N" -o $yn = "n"]
then

exit 0
fi

fi
cp $1 $2

• Mailmerge

#!/bin/sh
for name in $(<names)
do

sed s/NAME/$name/ <template >letter
here you could print the letter file out

done

7 Customising
Shell scripts are used to customise your environment. /etc/profile is read once on
login. The shell then looks for a file in your home directory called .profile. If you
haven’t got one then, depending on your set-up, a system default file might be used instead.
Typing printenv and alias will show you how things have been set up for you. The
‘type’ command can help you find out what will happen when you type something. E.g.

11

tw613/tpl: type cd
cd is a shell builtin
tw613/tpl: type handouts
handouts is /usr/local/bin/handouts
tw613/tpl: type lp
lp is a function
tw613/tpl: type history
history is an exported alias for fc -l

8 Shell Creation
Whenever you invoke a command that is not built into the shell, a new shell process is
created which inherits many of the properties of its parent. However, variables and aliases
are not inherited unless they are exported. Type “export” and you will see what’s been
exported by the initialisation files. Typing

she=janet ; he=john ; export she

(‘;’ is a statement separator) creates 2 new variables, only one of which is exported. They
can be printed out using

echo $she $he

Now type “bash”. This will put you into a new shell, a child of the original.

echo $she $he

will only print out one name, the one you exported. If you type “ps -f” you will get an
output something like

UID PID PPID C STIME TTY TIME CMD
tpl 6006 31173 0 14:03 pts/3 00:00:00 bash
tpl 6027 6006 0 14:03 pts/3 00:00:00 ps -f
tpl 31173 31172 0 09:01 pts/3 00:00:00 -bash

Notice that you are running 2 bash processes. The PPID column gives the PID of the
parent process so you can see that the 2nd shell was started from within the 1st. You can
kill this new shell by typing exit. More interestingly, you can suspend the shell by typing
<CTRL> Z and fall back into the original shell. Convince yourself that this is so by trying
the ‘echo’ and ‘ps’ commands again, or ‘jobs’, then return to the child shell by typing
‘fg’ (foreground). You won’t often need to jump around like this but it’s useful to be aware
of the mechanism, especially since it helps elucidate some problems regarding scope and
lifetimes of variables.

When you run a script by typing its name, a new process is started up. If the script
contains a cd command or changes the value of an environmental variable, only the new
process will be affected – the original shell’s environment and current directory won’t have
been ’overwritten’. If however you type ’source scriptname’ then the commands in
the script are run in the original process. This is called sourcing the script.

You can force shell script commands to run in a new process by using brackets. For
example, if you type “cd / ; ls” you will be left in the root directory, but if you type
“(cd / ; ls)” you’ll end up where you began because the cd command was run in a
new, temporary, process.

12

9 Advanced Features and Speed-ups
There are many mentioned in the shell man page. Here are just a few:-

getopt :- Helps parse command line options.

variable substitution :- ‘X=${H:-/help}’ sets the variable X to the value of H iff H
exists, otherwise it sets X to /help.

RANDOM :- a random number

for i in 1 2 3
do

echo $RANDOM is a random number
done

Regular Expressions :- Commands like grep and sedmake use of a more sophisticated
form of pattern matching than the ’*’ and ’?’ wildcard characters alone can offer. See
the manual page for details - on my system typing “man 5 regexp” displays the
page.

Eval :- Consider the following

word1=one
word2=two
number=1

The variable word$number has the value one but how can the value be accessed?
If you try echo $word$number or even echo ${word$number} you won’t
get the right answer. You want $number processed by the shell, then the resulting
command processed. One way to do this is to use eval echo \$word$number
- the \ symbol delays the interpretation of the first $ character until eval does a
second pass.

Alternative notations :- ((a=a<<2+3)) is the equivalent of let a="a<<2+3" –
note that this variant saves on quotemarks.

[[-f /etc/passwd]]
echo the passwd file exists

is another way of doing

if [-f /etc/passwd]
then

echo the passwd file exists
fi

or you could use the logical && operator, which like its C cousin only evaluates the
second operand if the first is true.

[-f /etc/passwd] && echo the passwd file exists

Bash features:- C-like for loops are possible.

13

for((i=1; $i<3; i=i+1))
do

echo $i
done

Regular expressions (wildcard characters etc) can be used in some comparisons. In
the following, ?[aeiou]? is a regular expression that matches a character followed
by one of a, e, i , o ,u, followed by a character

for word in four six sly
do

if [[$word == ?[aeiou]?]]
then

echo $word is 3 letters long with a central vowel
else

echo $word is not 3 letters long with a central vowel
fi

done

9.1 Signals and Temporary Files
A script may need to create temporary files to hold intermediate results. The safest way to
do this is to use mktemp which returns a currently unused name. The following command
creates a new file in /tmp.

newfile=$(mktemp)

If a script is prematurely aborted (the user may press ˆC for example) it’s good practise
to remove any temporary files. The trap command can be used to run a tidy-up routine
when the script (for whatever reason) exits. To see this in action start the following script
then press ˆC

newfile=$(mktemp)
trap "echo Removing $newfile ; rm -f $newfile" 0
sleep 100

10 Awk
Unix has many text manipulation utilities. The most flexible is awk. Its conciseness is paid
for by

• speed of execution.

• potentially hieroglyphic expressions.

but if you need to manipulate text files which have a fairly fixed line format, awk is ideal.
It operates on the fields of a line (the default field separator, FS, being <space>). When
awk reads in a line, the first field can be referred to as ‘$1’, the second ‘$2’ etc. The whole
line is ‘$0’. A short awk program can be written on the command line. eg

cat file | awk ’{print NF,$0}’

which prepends each line with the Number of Fields (ie, words) on the line. The quotes
are necessary because otherwise the shell would interpret special characters like ‘$’ before
awk had a chance to read them. Longer programs are best put into files.

14

Two examples in /export/Examples/Korn_shell (wordcount and awker)
should give CUED users a start (the awk manual page has more examples). Once you have
copied over wordcount and text, do

wordcount text

you will get a list of words in text and their frequency. Here is wordcount

awk ’ {for (i = 1; i<=NF ; i++)
num[$i]++

}
END {for (word in num)

print word, num[word]
}
’ $*

The syntax is similar to that of C. awk lines take form

<pattern> { <action> }

Each input line is matched against each awk line in turn. If, as here in wordcount, there
is no target pattern on the awk line then all input lines will be matched. If there is a match
but no action, the default action is to print the whole line.

Thus, the for loop is done for every line in the input. Each word in the line (NF is the
number of words on the line) is used as an index into an array whose element is incremented
with each instance of that word. The ability to have strings as array ‘subscripts’ is very
useful. END is a special pattern, matched by the end of the input file. Here its matching
action is to run a different sort of for loop that prints out the words and their frequencies.
The variable word takes successively the value of the string ‘subscripts’ of the array num.

Example 2 introduces some more concepts. Copy
/export/Examples/Korn_shell/data (shown below)

NAME AMOUNT STATUS
Tom 1.35 paid
Dick 3.87 Unpaid
Harry 56.00 Unpaid
Tom 36.03 unpaid
Harry 22.60 unpaid
Tom 8.15 paid
Tom 11.44 unpaid

and /export/Examples/Korn_shell/awker if you haven’t done so already. Here
is the text of awker

awk ’
$3 ˜ /ˆ[uU]npaid$/ {total[$1] += $2; owing=1}

END {
if (owing)

for (i in total)
print i, "owes", total[i] > "invoice"

else
print "No one owes anything" > "invoice"

}

’ $*

15

Typing

awker data

will add up how much each person still owes and put the answer in a file called invoice.
In awker the 3rd field is matched against a regular expression (to find out more about
these, type man 5 regexp). Note that both ’Unpaid’ and ’unpaid’ will match, but
nothing else. If there is a match then the action is performed. Note that awk copes intel-
ligently with strings that represent numbers; explicit conversion is rarely necessary. The
‘total’ array has indices which are the people’s names. If anyone owes, then a variable
‘owing’ is set to 1. At the end of the input, the amount each person owes is printed out.

Other awk facilities are:-

• fields can be split:-

n = split(field,new_array,separator)

• there are some string manipulation routines, e.g.:-

substr(string,first_pos,max_chars), index(string,substring)

• awk has built-in math functions (exp, log, sqrt, int) and relational operators (==, !=,
>, >=, <, <=, ˜ (meaning “contains”), !˜).

As you see, awk is almost a language in itself, and people used to C syntax can soon
create useful scripts with it.

11 References
• SHELLdorado2

• Shell Information3 from CUED, including a link to this document

• Documentation Source-code4

• Linux Shell Scripting Tutorial - A Beginner’s handbook5

2http://www.oase-shareware.org/shell/
3http://www-h.eng.cam.ac.uk/help/unix.html#Shell
4http://www-h.eng.cam.ac.uk/help/documentation/docsource/index.html
5http://www.freeos.com/guides/lsst/

16

