chapter 7

Data Modeling Using the
Entity-Relationship (ER) Model

(onceptual modeling is a very important phase in
designing a successful database application.

Generally, the term database application refers to a particular database and the
associated programs that implement the database queries and updates. For exam-
ple, a BANK database application that keeps track of customer accounts would
include programs that implement database updates corresponding to customer
deposits and withdrawals. These programs provide user-friendly graphical user
interfaces (GUIs) utilizing forms and menus for the end users of the application—
the bank tellers, in this example. Hence, a major part of the database application will
require the design, implementation, and testing of these application programs.
Traditionally, the design and testing of application programs has been considered
to be part of software engineering rather than database design. In many software
design tools, the database design methodologies and software engineering method-
ologies are intertwined since these activities are strongly related.

In this chapter, we follow the traditional approach of concentrating on the database
structures and constraints during conceptual database design. The design of appli-
cation programs is typically covered in software engineering courses. We present the
modeling concepts of the Entity-Relationship (ER) model, which is a popular
high-level conceptual data model. This model and its variations are frequently used
for the conceptual design of database applications, and many database design tools
employ its concepts. We describe the basic data-structuring concepts and con-
straints of the ER model and discuss their use in the design of conceptual schemas
for database applications. We also present the diagrammatic notation associated
with the ER model, known as ER diagrams.

199

200

Chapter 7 Data Modeling Using the Entity-Relationship (ER) Model

Object modeling methodologies such as the Unified Modeling Language (UML)
are becoming increasingly popular in both database and software design. These
methodologies go beyond database design to specify detailed design of software
modules and their interactions using various types of diagrams. An important part
of these methodologies—namely, class diagrams'—are similar in many ways to the
ER diagrams. In class diagrams, operations on objects are specified, in addition to
specifying the database schema structure. Operations can be used to specify the
functional requirements during database design, as we will discuss in Section 7.1. We
present some of the UML notation and concepts for class diagrams that are partic-
ularly relevant to database design in Section 7.8, and briefly compare these to ER
notation and concepts. Additional UML notation and concepts are presented in
Section 8.6 and in Chapter 10.

This chapter is organized as follows: Section 7.1 discusses the role of high-level con-
ceptual data models in database design. We introduce the requirements for a sample
database application in Section 7.2 to illustrate the use of concepts from the ER
model. This sample database is also used throughout the book. In Section 7.3 we
present the concepts of entities and attributes, and we gradually introduce the dia-
grammatic technique for displaying an ER schema. In Section 7.4 we introduce the
concepts of binary relationships and their roles and structural constraints. Section
7.5 introduces weak entity types. Section 7.6 shows how a schema design is refined
to include relationships. Section 7.7 reviews the notation for ER diagrams, summa-
rizes the issues and common pitfalls that occur in schema design, and discusses how
to choose the names for database schema constructs. Section 7.8 introduces some
UML class diagram concepts, compares them to ER model concepts, and applies
them to the same database example. Section 7.9 discusses more complex types of
relationships. Section 7.10 summarizes the chapter.

The material in Sections 7.8 and 7.9 may be excluded from an introductory course. If
a more thorough coverage of data modeling concepts and conceptual database design
is desired, the reader should continue to Chapter 8, where we describe extensions to
the ER model that lead to the Enhanced-ER (EER) model, which includes concepts
such as specialization, generalization, inheritance, and union types (categories). We
also introduce some additional UML concepts and notation in Chapter 8.

7.1 Using High-Level Conceptual Data Models
for Database Design

Figure 7.1 shows a simplified overview of the database design process. The first step
shown is requirements collection and analysis. During this step, the database
designers interview prospective database users to understand and document their
data requirements. The result of this step is a concisely written set of users’ require-
ments. These requirements should be specified in as detailed and complete a form
as possible. In parallel with specifying the data requirements, it is useful to specify

'A class is similar to an entity type in many ways.

7.1 Using High-Level Conceptual Data Models for Database Design 201

COLLECTION AND

Functional Requirements

J

FUNCTIONAL ANALYSIS

High-Level Transaction
Specification

T DBMS-independent

REQUIREMENTS

Data Requirements

J

CONCEPTUAL DESIGN

Conceptual Schema
(In a high-level data model)

v

LOGICAL DESIGN

DBMS-specific

Y

APPLICATION PROGRAM
DESIGN

Y

TRANSACTION |

(DATA MODEL MAPPING)

Logical (Conceptual) Schema
(In the data model of a specific DBMS)

'

PHYSICAL DESIGN

'

IMPLEMENTATION

'

Application Programs

Internal Schema

Figure 7.1
A simplified diagram to illustrate the
main phases of database design.

the known functional requirements of the application. These consist of the user-
defined operations (or transactions) that will be applied to the database, including
both retrievals and updates. In software design, it is common to use data flow dia-
grams, sequence diagrams, scenarios, and other techniques to specify functional
requirements. We will not discuss any of these techniques here; they are usually
described in detail in software engineering texts. We give an overview of some of

these techniques in Chapter 10.

Once the requirements have been collected and analyzed, the next step is to create a
conceptual schema for the database, using a high-level conceptual data model. This
step is called conceptual design. The conceptual schema is a concise description of

202

Chapter 7 Data Modeling Using the Entity-Relationship (ER) Model

the data requirements of the users and includes detailed descriptions of the entity
types, relationships, and constraints; these are expressed using the concepts pro-
vided by the high-level data model. Because these concepts do not include imple-
mentation details, they are usually easier to understand and can be used to
communicate with nontechnical users. The high-level conceptual schema can also
be used as a reference to ensure that all users’ data requirements are met and that the
requirements do not conflict. This approach enables database designers to concen-
trate on specifying the properties of the data, without being concerned with storage
and implementation details. This makes it is easier to create a good conceptual data-
base design.

During or after the conceptual schema design, the basic data model operations can
be used to specify the high-level user queries and operations identified during func-
tional analysis. This also serves to confirm that the conceptual schema meets all the
identified functional requirements. Modifications to the conceptual schema can be
introduced if some functional requirements cannot be specified using the initial
schema.

The next step in database design is the actual implementation of the database, using
a commercial DBMS. Most current commercial DBMSs use an implementation
data model—such as the relational or the object-relational database model—so the
conceptual schema is transformed from the high-level data model into the imple-
mentation data model. This step is called logical design or data model mapping; its
result is a database schema in the implementation data model of the DBMS. Data
model mapping is often automated or semiautomated within the database design
tools.

The last step is the physical design phase, during which the internal storage struc-
tures, file organizations, indexes, access paths, and physical design parameters for
the database files are specified. In parallel with these activities, application programs
are designed and implemented as database transactions corresponding to the high-
level transaction specifications. We discuss the database design process in more
detail in Chapter 10.

We present only the basic ER model concepts for conceptual schema design in this
chapter. Additional modeling concepts are discussed in Chapter 8, when we intro-
duce the EER model.

7.2 A Sample Database Application

In this section we describe a sample database application, called COMPANY, which
serves to illustrate the basic ER model concepts and their use in schema design. We
list the data requirements for the database here, and then create its conceptual
schema step-by-step as we introduce the modeling concepts of the ER model. The
COMPANY database keeps track of a company’s employees, departments, and proj-
ects. Suppose that after the requirements collection and analysis phase, the database
designers provide the following description of the miniworld—the part of the com-
pany that will be represented in the database.

7.3 Entity Types, Entity Sets, Attributes, and Keys

B The company is organized into departments. Each department has a unique
name, a unique number, and a particular employee who manages the
department. We keep track of the start date when that employee began man-
aging the department. A department may have several locations.

B A department controls a number of projects, each of which has a unique
name, a unique number, and a single location.

® We store each employee’s name, Social Security number,? address, salary, sex
(gender), and birth date. An employee is assigned to one department, but
may work on several projects, which are not necessarily controlled by the
same department. We keep track of the current number of hours per week
that an employee works on each project. We also keep track of the direct
supervisor of each employee (who is another employee).

B We want to keep track of the dependents of each employee for insurance
purposes. We keep each dependent’s first name, sex, birth date, and relation-
ship to the employee.

Figure 7.2 shows how the schema for this database application can be displayed by
means of the graphical notation known as ER diagrams. This figure will be
explained gradually as the ER model concepts are presented. We describe the step-
by-step process of deriving this schema from the stated requirements—and explain
the ER diagrammatic notation—as we introduce the ER model concepts.

7.3 Entity Types, Entity Sets, Attributes,
and Keys

The ER model describes data as entities, relationships, and attributes. In Section 7.3.1
we introduce the concepts of entities and their attributes. We discuss entity types
and key attributes in Section 7.3.2. Then, in Section 7.3.3, we specify the initial con-
ceptual design of the entity types for the COMPANY database. Relationships are
described in Section 7.4.

7.3.1 Entities and Attributes

Entities and Their Attributes. The basic object that the ER model represents is
an entity, which is a thing in the real world with an independent existence. An entity
may be an object with a physical existence (for example, a particular person, car,
house, or employee) or it may be an object with a conceptual existence (for instance,
a company, a job, or a university course). Each entity has attributes—the particular
properties that describe it. For example, an EMPLOYEE entity may be described by
the employee’s name, age, address, salary, and job. A particular entity will have a

The Social Security number, or SSN, is a unique nine-digit identifier assigned to each individual in the
United States to keep track of his or her employment, benefits, and taxes. Other countries may have
similar identification schemes, such as personal identification card numbers.

203

204 Chapter 7 Data Modeling Using the Entity-Relationship (ER) Model

EMPLOYEE < Number of employees —{ DEPARTMENT ‘

CONTROLS

N
M N
WORKS_ON | PROJECT |

Supervisor Supervisee 1

1 N

DEPENDENTS_OF

DEPENDENT |

Figure 7.2

An ER schema diagram for the COMPANY database. The diagrammatic notation
is introduced gradually throughout this chapter and is summarized in Figure 7.14.

Relationship

value for each of its attributes. The attribute values that describe each entity become
a major part of the data stored in the database.

Figure 7.3 shows two entities and the values of their attributes. The EMPLOYEE
entity e, has four attributes: Name, Address, Age, and Home_phone; their values are
‘John Smith, 2311 Kirby, Houston, Texas 77001’, ‘55, and ‘713-749-2630’, respec-
tively. The COMPANY entity c has three attributes: Name, Headquarters, and
President; their values are ‘Sunco Oil, ‘Houston), and ‘John Smith’, respectively.

Several types of attributes occur in the ER model: simple versus composite, single-
valued versus multivalued, and stored versus derived. First we define these attribute

7.3 Entity Types, Entity Sets, Attributes, and Keys 205

Name = John Smith Name = Sunco Oil

Address = 2311 Kirby
Houston, Texas 77001
eq Cq Headquarters = Houston

Age =55

Home_phone = 713-749-2630 President = John Smith

Figure 7.3

Two entities,
EMPLOYEE e, and
COMPANY ¢, and
their attributes.

types and illustrate their use via examples. Then we discuss the concept of a NULL
value for an attribute.

Composite versus Simple (Atomic) Attributes. Composite attributes can be
divided into smaller subparts, which represent more basic attributes with indepen-
dent meanings. For example, the Address attribute of the EMPLOYEE entity shown
in Figure 7.3 can be subdivided into Street_address, City, State, and Zip,> with the
values 2311 Kirby, ‘Houston, “Texas, and ‘77001. Attributes that are not divisible
are called simple or atomic attributes. Composite attributes can form a hierarchy;
for example, Street_address can be further subdivided into three simple component
attributes: Number, Street, and Apartment_number, as shown in Figure 7.4. The value
of a composite attribute is the concatenation of the values of its component simple
attributes.

Composite attributes are useful to model situations in which a user sometimes
refers to the composite attribute as a unit but at other times refers specifically to its
components. If the composite attribute is referenced only as a whole, there is no

Address Figure 74
A hierarchy of composite
attributes.
Street_address City State Zip
Number Street Apartment_number

3Zip Code is the name used in the United States for a five-digit postal code, such as 76019, which can
be extended to nine digits, such as 76019-0015. We use the five-digit Zip in our examples.

206

Chapter 7 Data Modeling Using the Entity-Relationship (ER) Model

need to subdivide it into component attributes. For example, if there is no need to
refer to the individual components of an address (Zip Code, street, and so on), then
the whole address can be designated as a simple attribute.

Single-Valued versus Multivalued Attributes. Most attributes have a single
value for a particular entity; such attributes are called single-valued. For example,
Age is a single-valued attribute of a person. In some cases an attribute can have a set
of values for the same entity—for instance, a Colors attribute for a car, or a
College_degrees attribute for a person. Cars with one color have a single value,
whereas two-tone cars have two color values. Similarly, one person may not have a
college degree, another person may have one, and a third person may have two or
more degrees; therefore, different people can have different numbers of values for
the College_degrees attribute. Such attributes are called multivalued. A multivalued
attribute may have lower and upper bounds to constrain the number of values
allowed for each individual entity. For example, the Colors attribute of a car may be
restricted to have between one and three values, if we assume that a car can have
three colors at most.

Stored versus Derived Attributes. In some cases, two (or more) attribute val-
ues are related—for example, the Age and Birth_date attributes of a person. For a
particular person entity, the value of Age can be determined from the current
(today’s) date and the value of that person’s Birth_date. The Age attribute is hence
called a derived attribute and is said to be derivable from the Birth_date attribute,
which is called a stored attribute. Some attribute values can be derived from
related entities; for example, an attribute Number_of_employees of a DEPARTMENT
entity can be derived by counting the number of employees related to (working
for) that department.

NULL Values. In some cases, a particular entity may not have an applicable value
for an attribute. For example, the Apartment_number attribute of an address applies
only to addresses that are in apartment buildings and not to other types of resi-
dences, such as single-family homes. Similarly, a College_degrees attribute applies
only to people with college degrees. For such situations, a special value called NULL
is created. An address of a single-family home would have NULL for its
Apartment_number attribute, and a person with no college degree would have NULL
for College_degrees. NULL can also be used if we do not know the value of an attrib-
ute for a particular entity—for example, if we do not know the home phone num-
ber of John Smith’ in Figure 7.3. The meaning of the former type of NULL is not
applicable, whereas the meaning of the latter is unknown. The unknown category of
NULL can be further classified into two cases. The first case arises when it is known
that the attribute value exists but is missing—for instance, if the Height attribute of a
person is listed as NULL. The second case arises when it is not known whether the
attribute value exists—for example, if the Home_phone attribute of a person is NULL.

Complex Attributes. Notice that, in general, composite and multivalued attrib-
utes can be nested arbitrarily. We can represent arbitrary nesting by grouping com-

7.3 Entity Types, Entity Sets, Attributes, and Keys

ponents of a composite attribute between parentheses () and separating the compo-
nents with commas, and by displaying multivalued attributes between braces { }.
Such attributes are called complex attributes. For example, if a person can have
more than one residence and each residence can have a single address and multiple
phones, an attribute Address_phone for a person can be specified as shown in Figure
7.5.4 Both Phone and Address are themselves composite attributes.

7.3.2 Entity Types, Entity Sets, Keys, and Value Sets

Entity Types and Entity Sets. A database usually contains groups of entities that
are similar. For example, a company employing hundreds of employees may want to
store similar information concerning each of the employees. These employee entities
share the same attributes, but each entity has its own value(s) for each attribute. An
entity type defines a collection (or set) of entities that have the same attributes. Each
entity type in the database is described by its name and attributes. Figure 7.6 shows
two entity types: EMPLOYEE and COMPANY, and a list of some of the attributes for

207

{Address_phone({Phone(Area_code,Phone_number)},Address(Street_address
(Number,Street,Apartment_number),City,State,Zip))}

Figure 7.5
A complex attribute:
Address_phone.

Entity Type Name: EMPLOYEE COMPANY

Name, Age, Salary
-

Name, Headquarters, President
4 N\

~

€1 o Cie

(John Smith, 55, 80k) (Sunco Oil, Houston, John Smith)

€2 o Co o

Entity Set:

(Extension) (Fast Computer, Dallas, Bob King)

(Fred Brown, 40, 30K)

€3 o

(Judy Clark, 25, 20K)

4For those familiar with XML, we should note that complex attributes are similar to complex elements in
XML (see Chapter 12).

Figure 7.6

Two entity types,
EMPLOYEE and
COMPANY, and some
member entities of
each.

208 Chapter 7 Data Modeling Using the Entity-Relationship (ER) Model

each. A few individual entities of each type are also illustrated, along with the values
of their attributes. The collection of all entities of a particular entity type in the data-
base at any point in time is called an entity set; the entity set is usually referred to
using the same name as the entity type. For example, EMPLOYEE refers to both a type
of entity as well as the current set of all employee entities in the database.

An entity type is represented in ER diagrams® (see Figure 7.2) as a rectangular box
enclosing the entity type name. Attribute names are enclosed in ovals and are
attached to their entity type by straight lines. Composite attributes are attached to
their component attributes by straight lines. Multivalued attributes are displayed in
double ovals. Figure 7.7(a) shows a CAR entity type in this notation.

An entity type describes the schema or intension for a set of entities that share the
same structure. The collection of entities of a particular entity type is grouped into
an entity set, which is also called the extension of the entity type.

Key Attributes of an Entity Type. An important constraint on the entities of an
entity type is the key or uniqueness constraint on attributes. An entity type usually

Figure 7.7 (a)
The CAR entity type

with two key attributes,
Registration and

Vehicle_id. (a) ER
diagram notation. (b) CAR

Entity set with three
entities.

Q) "é

-

A
Registration (Number, State), Vehicle_id, Make, Model, Year, {Color}

4 CAR; b

((ABC 123, TEXAS), TK629, Ford Mustang, convertible, 2004 {red, black})

(b)

CAR,
((ABC 123, NEW YORK), WP9872, Nissan Maxima, 4-door, 2005, {blue})

CAR3
((VSY 720, TEXAS), TD729, Chrysler LeBaron, 4-door, 2002, {white, blue})

e o o

. J

SWe use a notation for ER diagrams that is close to the original proposed notation (Chen 1976). Many
other notations are in use; we illustrate some of them later in this chapter when we present UML class
diagrams and in Appendix A.

7.3 Entity Types, Entity Sets, Attributes, and Keys

has one or more attributes whose values are distinct for each individual entity in the
entity set. Such an attribute is called a key attribute, and its values can be used to
identify each entity uniquely. For example, the Name attribute is a key of the
COMPANY entity type in Figure 7.6 because no two companies are allowed to have
the same name. For the PERSON entity type, a typical key attribute is Ssn (Social
Security number). Sometimes several attributes together form a key, meaning that
the combination of the attribute values must be distinct for each entity. If a set of
attributes possesses this property, the proper way to represent this in the ER model
that we describe here is to define a composite attribute and designate it as a key
attribute of the entity type. Notice that such a composite key must be minimal; that
is, all component attributes must be included in the composite attribute to have the
uniqueness property. Superfluous attributes must not be included in a key. In ER
diagrammatic notation, each key attribute has its name underlined inside the oval,
as illustrated in Figure 7.7(a).

Specifying that an attribute is a key of an entity type means that the preceding
uniqueness property must hold for every entity set of the entity type. Hence, it is a
constraint that prohibits any two entities from having the same value for the key
attribute at the same time. It is not the property of a particular entity set; rather, it is
a constraint on any entity set of the entity type at any point in time. This key con-
straint (and other constraints we discuss later) is derived from the constraints of the
miniworld that the database represents.

Some entity types have more than one key attribute. For example, each of the
Vehicle_id and Registration attributes of the entity type CAR (Figure 7.7) is a key in its
own right. The Registration attribute is an example of a composite key formed from
two simple component attributes, State and Number, neither of which is a key on its
own. An entity type may also have no key, in which case it is called a weak entity type
(see Section 7.5).

In our diagrammatic notation, if two attributes are underlined separately, then each
is a key on its own. Unlike the relational model (see Section 3.2.2), there is no con-
cept of primary key in the ER model that we present here; the primary key will be
chosen during mapping to a relational schema (see Chapter 9).

Value Sets (Domains) of Attributes. Each simple attribute of an entity type is
associated with a value set (or domain of values), which specifies the set of values
that may be assigned to that attribute for each individual entity. In Figure 7.6, if the
range of ages allowed for employees is between 16 and 70, we can specify the value
set of the Age attribute of EMPLOYEE to be the set of integer numbers between 16
and 70. Similarly, we can specify the value set for the Name attribute to be the set of
strings of alphabetic characters separated by blank characters, and so on. Value sets
are not displayed in ER diagrams, and are typically specified using the basic data
types available in most programming languages, such as integer, string, Boolean,
float, enumerated type, subrange, and so on. Additional data types to represent
common database types such as date, time, and other concepts are also employed.

209

210

Chapter 7 Data Modeling Using the Entity-Relationship (ER) Model

Mathematically, an attribute A of entity set E whose value set is V can be defined as
a function from E to the power set® P(V) of V:

A:E—P(V)

We refer to the value of attribute A for entity e as A(e). The previous definition cov-
ers both single-valued and multivalued attributes, as well as NULLs. A NULL value is
represented by the empty set. For single-valued attributes, A(e) is restricted to being
a singleton set for each entity e in E, whereas there is no restriction on multivalued
attributes.” For a composite attribute A, the value set V is the power set of the
Cartesian product of P(V,), P(V,), ..., P(V,), where V|, V., ..., V_ are the value sets
of the simple component attributes that form A:

V=P (P(V,) X P(V,)) X..xP(V,))

The value set provides all possible values. Usually only a small number of these val-
ues exist in the database at a particular time. Those values represent the data from
the current state of the miniworld. They correspond to the data as it actually exists
in the miniworld.

7.3.3 Initial Conceptual Design of the COMPANY Database

We can now define the entity types for the COMPANY database, based on the
requirements described in Section 7.2. After defining several entity types and their
attributes here, we refine our design in Section 7.4 after we introduce the concept of
a relationship. According to the requirements listed in Section 7.2, we can identify
four entity types—one corresponding to each of the four items in the specification
(see Figure 7.8):

1. An entity type DEPARTMENT with attributes Name, Number, Locations,
Manager, and Manager_start_date. Locations is the only multivalued attribute.
We can specify that both Name and Number are (separate) key attributes
because each was specified to be unique.

2. An entity type PROJECT with attributes Name, Number, Location, and
Controlling_department. Both Name and Number are (separate) key attributes.

3. An entity type EMPLOYEE with attributes Name, Ssn, Sex, Address, Salary,
Birth_date, Department, and Supervisor. Both Name and Address may be com-
posite attributes; however, this was not specified in the requirements. We
must go back to the users to see if any of them will refer to the individual
components of Name—First_name, Middle_initial, Last_name—or of Address.

4. An entity type DEPENDENT with attributes Employee, Dependent_name, Sex,
Birth_date, and Relationship (to the employee).

6The power set P(V) of a set Vis the set of all subsets of V.

A singleton set is a set with only one element (value).

7.3 Entity Types, Entity Sets, Attributes, and Keys 211

DEPARTMENT

Manager_start_date

EMPLOYEE

Figure 7.8
Birth date Employee Preliminary design of entity types
for the COMPANY database.
Relatlonsh|p Dependent name

Some of the shown attributes will

DEPENDENT be refined into relationships.

So far, we have not represented the fact that an employee can work on several proj-
ects, nor have we represented the number of hours per week an employee works on
each project. This characteristic is listed as part of the third requirement in Section
7.2, and it can be represented by a multivalued composite attribute of EMPLOYEE
called Works_on with the simple components (Project, Hours). Alternatively, it can be
represented as a multivalued composite attribute of PROJECT called Workers with
the simple components (Employee, Hours). We choose the first alternative in Figure
7.8, which shows each of the entity types just described. The Name attribute of
EMPLOYEE is shown as a composite attribute, presumably after consultation with
the users.

212

Chapter 7 Data Modeling Using the Entity-Relationship (ER) Model

7.4 Relationship Types, Relationship Sets,
Roles, and Structural Constraints

In Figure 7.8 there are several implicit relationships among the various entity types.
In fact, whenever an attribute of one entity type refers to another entity type, some
relationship exists. For example, the attribute Manager of DEPARTMENT refers to an
employee who manages the department; the attribute Controlling_department of
PROJECT refers to the department that controls the project; the attribute Supervisor
of EMPLOYEE refers to another employee (the one who supervises this employee);
the attribute Department of EMPLOYEE refers to the department for which the
employee works; and so on. In the ER model, these references should not be repre-
sented as attributes but as relationships, which are discussed in this section. The
COMPANY database schema will be refined in Section 7.6 to represent relationships
explicitly. In the initial design of entity types, relationships are typically captured in
the form of attributes. As the design is refined, these attributes get converted into
relationships between entity types.

This section is organized as follows: Section 7.4.1 introduces the concepts of rela-
tionship types, relationship sets, and relationship instances. We define the concepts
of relationship degree, role names, and recursive relationships in Section 7.4.2, and
then we discuss structural constraints on relationships—such as cardinality ratios
and existence dependencies—in Section 7.4.3. Section 7.4.4 shows how relationship
types can also have attributes.

74.1 Relationship Types, Sets, and Instances

A relationship type R among n entity types E, E,, ..., E, defines a set of associa-
tions—or a relationship set—among entities from these entity types. As for the
case of entity types and entity sets, a relationship type and its corresponding rela-
tionship set are customarily referred to by the same name, R. Mathematically, the
relationship set R is a set of relationship instances T where each r; associates n
individual entities (e, e, ..., ¢,), and each entity e. in r, is a member of entity set E i
1 <j < n. Hence, a relationship set is a mathematical relation on E,, E,, ..., E, ; alter-
natively, it can be defined as a subset of the Cartesian product of the entity sets E; X
E, X ... X E,. Bach of the entity types E, E , ..., E, is said to participate in the rela-
tionship type R; similarly, each of the individual entities e, e, ..., e, is said to
participate in the relationship instance r, = (e, e,, ..., €,)).

Informally, each relationship instance r; in R is an association of entities, where the
association includes exactly one entity from each participating entity type. Each
such relationship instance r; represents the fact that the entities participating in
are related in some way in the corresponding miniworld situation. For example,
consider a relationship type WORKS_FOR between the two entity types EMPLOYEE
and DEPARTMENT, which associates each employee with the department for which
the employee works in the corresponding entity set. Each relationship instance in
the relationship set WORKS_FOR associates one EMPLOYEE entity and one
DEPARTMENT entity. Figure 7.9 illustrates this example, where each relationship

7.4 Relationship Types, Relationship Sets, Roles, and Structural Constraints

EMPLOYEE WORKS_FOR DEPARTMENT

Figure 7.9

Some instances in the
WORKS_FOR relationship
set, which represents a
relationship type
WORKS_FOR between
EMPLOYEE and
DEPARTMENT.

213

instance r; is shown connected to the EMPLOYEE and DEPARTMENT entities that
participate in ;. In the miniworld represented by Figure 7.9, employees e,, e;, and ¢,
work for department d; employees e, and e, work for department d; and employ-
ees e; and e, work for department d;.

In ER diagrams, relationship types are displayed as diamond-shaped boxes, which
are connected by straight lines to the rectangular boxes representing the participat-
ing entity types. The relationship name is displayed in the diamond-shaped box (see
Figure 7.2).

74.2 Relationship Degree, Role Names,
and Recursive Relationships

Degree of a Relationship Type. The degree of a relationship type is the number
of participating entity types. Hence, the WORKS_FOR relationship is of degree two.
A relationship type of degree two is called binary, and one of degree three is called
ternary. An example of a ternary relationship is SUPPLY, shown in Figure 7.10,
where each relationship instance r; associates three entities—a supplier s, a part p,
and a project j—whenever s supplies part p to project j. Relationships can generally
be of any degree, but the ones most common are binary relationships. Higher-
degree relationships are generally more complex than binary relationships; we char-
acterize them further in Section 7.9.

214 Chapter 7 Data Modeling Using the Entity-Relationship (ER) Model

Figure 7.10

Some relationship instances in
the SUPPLY ternary relationship

set.

SUPPLIER SUPPLY PROJECT

Relationships as Attributes. It is sometimes convenient to think of a binary
relationship type in terms of attributes, as we discussed in Section 7.3.3. Consider
the WORKS_FOR relationship type in Figure 7.9. One can think of an attribute
called Department of the EMPLOYEE entity type, where the value of Department for
each EMPLOYEE entity is (a reference to) the DEPARTMENT entity for which that
employee works. Hence, the value set for this Department attribute is the set of all
DEPARTMENT entities, which is the DEPARTMENT entity set. This is what we did in
Figure 7.8 when we specified the initial design of the entity type EMPLOYEE for the
COMPANY database. However, when we think of a binary relationship as an attrib-
ute, we always have two options. In this example, the alternative is to think of a mul-
tivalued attribute Employee of the entity type DEPARTMENT whose values for each
DEPARTMENT entity is the set of EMPLOYEE entities who work for that department.
The value set of this Employee attribute is the power set of the EMPLOYEE entity set.
Either of these two attributes—Department of EMPLOYEE or Employee of
DEPARTMENT—can represent the WORKS_FOR relationship type. If both are repre-
sented, they are constrained to be inverses of each other.8

8This concept of representing relationship types as attributes is used in a class of data models called
functional data models. In object databases (see Chapter 11), relationships can be represented by ref-
erence attributes, either in one direction or in both directions as inverses. In relational databases (see
Chapter 3), foreign keys are a type of reference attribute used to represent relationships.

7.4 Relationship Types, Relationship Sets, Roles, and Structural Constraints

Role Names and Recursive Relationships. Each entity type that participates
in a relationship type plays a particular role in the relationship. The role name sig-
nifies the role that a participating entity from the entity type plays in each relation-
ship instance, and helps to explain what the relationship means. For example, in the
WORKS_FOR relationship type, EMPLOYEE plays the role of employee or worker and
DEPARTMENT plays the role of department or employer.

Role names are not technically necessary in relationship types where all the partici-
pating entity types are distinct, since each participating entity type name can be
used as the role name. However, in some cases the same entity type participates
more than once in a relationship type in different roles. In such cases the role name
becomes essential for distinguishing the meaning of the role that each participating
entity plays. Such relationship types are called recursive relationships. Figure 7.11
shows an example. The SUPERVISION relationship type relates an employee to a
supervisor, where both employee and supervisor entities are members of the same
EMPLOYEE entity set. Hence, the EMPLOYEE entity type participates twice in
SUPERVISION: once in the role of supervisor (or boss), and once in the role of
supervisee (or subordinate). Each relationship instance r, in SUPERVISION associates
two employee entities e; and e, one of which plays the role of supervisor and the
other the role of supervisee. In Figure 7.11, the lines marked ‘1’ represent the super-
visor role, and those marked 2’ represent the supervisee role; hence, e, supervises e,
and e, e, supervises ¢ and e, and e, supervises e, and e,. In this example, each rela-
tionship instance must be connected with two lines, one marked with ‘1’ (supervi-
sor) and the other with 2’ (supervisee).

215

EMPLOYEE SUPERVISION Figure 7.11

A recursive relationship
SUPERVISION between
EMPLOYEE in the
supervisor role (1) and
EMPLOYEE in the
subordinate role (2).

€4

€9 &—

216 Chapter 7 Data Modeling Using the Entity-Relationship (ER) Model

74.3 Constraints on Binary Relationship Types

Relationship types usually have certain constraints that limit the possible combina-
tions of entities that may participate in the corresponding relationship set. These
constraints are determined from the miniworld situation that the relationships rep-
resent. For example, in Figure 7.9, if the company has a rule that each employee
must work for exactly one department, then we would like to describe this con-
straint in the schema. We can distinguish two main types of binary relationship
constraints: cardinality ratio and participation.

Cardinality Ratios for Binary Relationships. The cardinality ratio for a binary
relationship specifies the maximum number of relationship instances that an entity
can participate in. For example, in the WORKS_FOR binary relationship type,
DEPARTMENT:EMPLOYEE is of cardinality ratio 1:N, meaning that each department
can be related to (that is, employs) any number of employees,” but an employee can
be related to (work for) only one department. This means that for this particular
relationship WORKS_FOR, a particular department entity can be related to any
number of employees (N indicates there is no maximum number). On the other
hand, an employee can be related to a maximum of one department. The possible
cardinality ratios for binary relationship types are 1:1, 1:N, N:1, and M:N.

An example of a 1:1 binary relationship is MANAGES (Figure 7.12), which relates a
department entity to the employee who manages that department. This represents
the miniworld constraints that—at any point in time—an employee can manage
one department only and a department can have one manager only. The relation-
ship type WORKS_ON (Figure 7.13) is of cardinality ratio M:N, because the mini-

Figure 7.12
A 1:1 relationship,
MANAGES.

EMPLOYEE MANAGES DEPARTMENT

9N stands for any number of related entities (zero or more).

7.4 Relationship Types, Relationship Sets, Roles, and Structural Constraints

EMPLOYEE WORKS_ON PROJECT

Figure 7.13

217

An M:N relationship,
WORKS_ON.

world rule is that an employee can work on several projects and a project can have
several employees.

Cardinality ratios for binary relationships are represented on ER diagrams by dis-
playing 1, M, and N on the diamonds as shown in Figure 7.2. Notice that in this
notation, we can either specify no maximum (N) or a maximum of one (1) on par-
ticipation. An alternative notation (see Section 7.7.4) allows the designer to specify
a specific maximum number on participation, such as 4 or 5.

Participation Constraints and Existence Dependencies. The participation
constraint specifies whether the existence of an entity depends on its being related
to another entity via the relationship type. This constraint specifies the minimum
number of relationship instances that each entity can participate in, and is some-
times called the minimum cardinality constraint. There are two types of participa-
tion constraints—total and partial—that we illustrate by example. If a company
policy states that every employee must work for a department, then an employee
entity can exist only if it participates in at least one WORKS_FOR relationship
instance (Figure 7.9). Thus, the participation of EMPLOYEE in WORKS_FOR is
called total participation, meaning that every entity in the total set of employee
entities must be related to a department entity via WORKS_FOR. Total participation
is also called existence dependency. In Figure 7.12 we do not expect every employee
to manage a department, so the participation of EMPLOYEE in the MANAGES rela-
tionship type is partial, meaning that some or part of the set of employee entities are
related to some department entity via MANAGES, but not necessarily all. We will

218

Chapter 7 Data Modeling Using the Entity-Relationship (ER) Model

refer to the cardinality ratio and participation constraints, taken together, as the
structural constraints of a relationship type.

In ER diagrams, total participation (or existence dependency) is displayed as a
double line connecting the participating entity type to the relationship, whereas par-
tial participation is represented by a single line (see Figure 7.2). Notice that in this
notation, we can either specify no minimum (partial participation) or a minimum
of one (total participation). The alternative notation (see Section 7.7.4) allows the
designer to specify a specific minimum number on participation in the relationship,
such as 4 or 5.

We will discuss constraints on higher-degree relationships in Section 7.9.

74.4 Attributes of Relationship Types

Relationship types can also have attributes, similar to those of entity types. For
example, to record the number of hours per week that an employee works on a par-
ticular project, we can include an attribute Hours for the WORKS_ON relationship
type in Figure 7.13. Another example is to include the date on which a manager
started managing a department via an attribute Start_date for the MANAGES rela-
tionship type in Figure 7.12.

Notice that attributes of 1:1 or 1:N relationship types can be migrated to one of the
participating entity types. For example, the Start_date attribute for the MANAGES
relationship can be an attribute of either EMPLOYEE or DEPARTMENT, although
conceptually it belongs to MANAGES. This is because MANAGES is a 1:1 relation-
ship, so every department or employee entity participates in at most one relationship
instance. Hence, the value of the Start_date attribute can be determined separately,
either by the participating department entity or by the participating employee
(manager) entity.

For a 1:N relationship type, a relationship attribute can be migrated only to the
entity type on the N-side of the relationship. For example, in Figure 7.9, if the
WORKS_FOR relationship also has an attribute Start_date that indicates when an
employee started working for a department, this attribute can be included as an
attribute of EMPLOYEE. This is because each employee works for only one depart-
ment, and hence participates in at most one relationship instance in WORKS_FOR.
In both 1:1 and 1:N relationship types, the decision where to place a relationship
attribute—as a relationship type attribute or as an attribute of a participating entity
type—is determined subjectively by the schema designer.

For M:N relationship types, some attributes may be determined by the combination
of participating entities in a relationship instance, not by any single entity. Such
attributes must be specified as relationship attributes. An example is the Hours attrib-
ute of the M:N relationship WORKS_ON (Figure 7.13); the number of hours per
week an employee currently works on a project is determined by an employee-
project combination and not separately by either entity.

7.5 Weak Entity Types

7.5 Weak Entity Types

Entity types that do not have key attributes of their own are called weak entity
types. In contrast, regular entity types that do have a key attribute—which include
all the examples discussed so far—are called strong entity types. Entities belonging
to a weak entity type are identified by being related to specific entities from another
entity type in combination with one of their attribute values. We call this other
entity type the identifying or owner entity type,'” and we call the relationship type
that relates a weak entity type to its owner the identifying relationship of the weak
entity type.!! A weak entity type always has a total participation constraint (existence
dependency) with respect to its identifying relationship because a weak entity can-
not be identified without an owner entity. However, not every existence dependency
results in a weak entity type. For example, a DRIVER_LICENSE entity cannot exist
unless it is related to a PERSON entity, even though it has its own key
(License_number) and hence is not a weak entity.

Consider the entity type DEPENDENT, related to EMPLOYEE, which is used to keep
track of the dependents of each employee via a 1:N relationship (Figure 7.2). In our
example, the attributes of DEPENDENT are Name (the first name of the dependent),
Birth_date, Sex, and Relationship (to the employee). Two dependents of two distinct
employees may, by chance, have the same values for Name, Birth_date, Sex, and
Relationship, but they are still distinct entities. They are identified as distinct entities
only after determining the particular employee entity to which each dependent is
related. Each employee entity is said to own the dependent entities that are related
to it.

A weak entity type normally has a partial key, which is the attribute that can
uniquely identify weak entities that are related to the same owner entity.'> In our
example, if we assume that no two dependents of the same employee ever have the
same first name, the attribute Name of DEPENDENT is the partial key. In the worst
case, a composite attribute of all the weak entity’s attributes will be the partial key.

In ER diagrams, both a weak entity type and its identifying relationship are distin-
guished by surrounding their boxes and diamonds with double lines (see Figure
7.2). The partial key attribute is underlined with a dashed or dotted line.

Weak entity types can sometimes be represented as complex (composite, multival-
ued) attributes. In the preceding example, we could specify a multivalued attribute
Dependents for EMPLOYEE, which is a composite attribute with component attrib-
utes Name, Birth_date, Sex, and Relationship. The choice of which representation to
use is made by the database designer. One criterion that may be used is to choose the

10The identifying entity type is also sometimes called the parent entity type or the dominant entity
type.

The weak entity type is also sometimes called the child entity type or the subordinate entity type.

2The partial key is sometimes called the discriminator.

219

220

Chapter 7 Data Modeling Using the Entity-Relationship (ER) Model

weak entity type representation if there are many attributes. If the weak entity par-
ticipates independently in relationship types other than its identifying relationship
type, then it should not be modeled as a complex attribute.

In general, any number of levels of weak entity types can be defined; an owner
entity type may itself be a weak entity type. In addition, a weak entity type may have
more than one identifying entity type and an identifying relationship type of degree
higher than two, as we illustrate in Section 7.9.

7.6 Refining the ER Design for the COMPANY
Database

We can now refine the database design in Figure 7.8 by changing the attributes that
represent relationships into relationship types. The cardinality ratio and participa-
tion constraint of each relationship type are determined from the requirements
listed in Section 7.2. If some cardinality ratio or dependency cannot be determined
from the requirements, the users must be questioned further to determine these
structural constraints.

In our example, we specify the following relationship types:

B MANAGES, a 1:1 relationship type between EMPLOYEE and DEPARTMENT.
EMPLOYEE participation is partial. DEPARTMENT participation is not clear
from the requirements. We question the users, who say that a department
must have a manager at all times, which implies total participation.!® The
attribute Start_date is assigned to this relationship type.

B WORKS_FOR, a 1:N relationship type between DEPARTMENT and
EMPLOYEE. Both participations are total.

B CONTROLS, a L:N relationship type between DEPARTMENT and PROJECT.
The participation of PROJECT is total, whereas that of DEPARTMENT is
determined to be partial, after consultation with the users indicates that
some departments may control no projects.

B SUPERVISION, a 1:N relationship type between EMPLOYEE (in the supervi-
sor role) and EMPLOYEE (in the supervisee role). Both participations are
determined to be partial, after the users indicate that not every employee is a
supervisor and not every employee has a supervisor.

B WORKS_ON, determined to be an M:N relationship type with attribute
Hours, after the users indicate that a project can have several employees
working on it. Both participations are determined to be total.

® DEPENDENTS_OF, a 1:N relationship type between EMPLOYEE and
DEPENDENT, which is also the identifying relationship for the weak entity

13The rules in the miniworld that determine the constraints are sometimes called the business rules,
since they are determined by the business or organization that will utilize the database.

7.7 ER Diagrams, Naming Conventions, and Design Issues

type DEPENDENT. The participation of EMPLOYEE is partial, whereas that of
DEPENDENT is total.

After specifying the above six relationship types, we remove from the entity types in
Figure 7.8 all attributes that have been refined into relationships. These include
Manager and Manager_start_date from DEPARTMENT; Controlling_department from
PROJECT; Department, Supervisor, and Works_on from EMPLOYEE; and Employee
from DEPENDENT. It is important to have the least possible redundancy when we
design the conceptual schema of a database. If some redundancy is desired at the
storage level or at the user view level, it can be introduced later, as discussed in
Section 1.6.1.

7.7 ER Diagrams, Naming Conventions,
and Design Issues

7.71 Summary of Notation for ER Diagrams

Figures 7.9 through 7.13 illustrate examples of the participation of entity types in
relationship types by displaying their sets or extensions—the individual entity
instances in an entity set and the individual relationship instances in a relationship
set. In ER diagrams the emphasis is on representing the schemas rather than the
instances. This is more useful in database design because a database schema changes
rarely, whereas the contents of the entity sets change frequently. In addition, the
schema is obviously easier to display, because it is much smaller.

Figure 7.2 displays the COMPANY ER database schema as an ER diagram. We now
review the full ER diagram notation. Entity types such as EMPLOYEE,
DEPARTMENT, and PROJECT are shown in rectangular boxes. Relationship types
such as WORKS_FOR, MANAGES, CONTROLS, and WORKS_ON are shown in
diamond-shaped boxes attached to the participating entity types with straight lines.
Attributes are shown in ovals, and each attribute is attached by a straight line to its
entity type or relationship type. Component attributes of a composite attribute are
attached to the oval representing the composite attribute, as illustrated by the Name
attribute of EMPLOYEE. Multivalued attributes are shown in double ovals, as illus-
trated by the Locations attribute of DEPARTMENT. Key attributes have their names
underlined. Derived attributes are shown in dotted ovals, as illustrated by the
Number_of_employees attribute of DEPARTMENT.

Weak entity types are distinguished by being placed in double rectangles and by
having their identifying relationship placed in double diamonds, as illustrated by
the DEPENDENT entity type and the DEPENDENTS_OF identifying relationship
type. The partial key of the weak entity type is underlined with a dotted line.

In Figure 7.2 the cardinality ratio of each binary relationship type is specified by
attaching a 1, M, or N on each participating edge. The cardinality ratio of
DEPARTMENT:EMPLOYEE in MANAGES is 1:1, whereas it is 1:N for DEPARTMENT:
EMPLOYEE in WORKS_FOR, and M:N for WORKS_ON. The participation

221

222

Chapter 7 Data Modeling Using the Entity-Relationship (ER) Model

constraint is specified by a single line for partial participation and by double lines
for total participation (existence dependency).

In Figure 7.2 we show the role names for the SUPERVISION relationship type
because the same EMPLOYEE entity type plays two distinct roles in that relationship.
Notice that the cardinality ratio is 1:N from supervisor to supervisee because each
employee in the role of supervisee has at most one direct supervisor, whereas an
employee in the role of supervisor can supervise zero or more employees.

Figure 7.14 summarizes the conventions for ER diagrams. It is important to note

that there are many other alternative diagrammatic notations (see Section 7.7.4 and
Appendix A).

7.72 Proper Naming of Schema Constructs

When designing a database schema, the choice of names for entity types, attributes,
relationship types, and (particularly) roles is not always straightforward. One
should choose names that convey, as much as possible, the meanings attached to the
different constructs in the schema. We choose to use singular names for entity types,
rather than plural ones, because the entity type name applies to each individual
entity belonging to that entity type. In our ER diagrams, we will use the convention
that entity type and relationship type names are uppercase letters, attribute names
have their initial letter capitalized, and role names are lowercase letters. We have
used this convention in Figure 7.2.

As a general practice, given a narrative description of the database requirements, the
nouns appearing in the narrative tend to give rise to entity type names, and the verbs
tend to indicate names of relationship types. Attribute names generally arise from
additional nouns that describe the nouns corresponding to entity types.

Another naming consideration involves choosing binary relationship names to
make the ER diagram of the schema readable from left to right and from top to bot-
tom. We have generally followed this guideline in Figure 7.2. To explain this naming
convention further, we have one exception to the convention in Figure 7.2—the
DEPENDENTS_OF relationship type, which reads from bottom to top. When we
describe this relationship, we can say that the DEPENDENT entities (bottom entity
type) are DEPENDENTS_OF (relationship name) an EMPLOYEE (top entity type).
To change this to read from top to bottom, we could rename the relationship type to
HAS_DEPENDENTS, which would then read as follows: An EMPLOYEE entity (top
entity type) HAS_DEPENDENTS (relationship name) of type DEPENDENT (bottom
entity type). Notice that this issue arises because each binary relationship can be
described starting from either of the two participating entity types, as discussed in
the beginning of Section 7.4.

7.7.3 Design Choices for ER Conceptual Design

It is occasionally difficult to decide whether a particular concept in the miniworld
should be modeled as an entity type, an attribute, or a relationship type. In this

7.7 ER Diagrams, Naming Conventions, and Design Issues 223

Symbol Meaning Figure 7.14
Summary of the notation

Entity for ER diagrams.

Weak Entity

Relationship

—
—
O
—
—
-

Attribute

Key Attribute

Multivalued Attribute

Composite Attribute

Derived Attribute

|

Total Participation of £, in R

Cardinality Ratio 1: N for E,:E, in R

(min, max)

Structural Constraint (min, max)
on Participation of Ein R

224

Chapter 7 Data Modeling Using the Entity-Relationship (ER) Model

section, we give some brief guidelines as to which construct should be chosen in
particular situations.

In general, the schema design process should be considered an iterative refinement
process, where an initial design is created and then iteratively refined until the most
suitable design is reached. Some of the refinements that are often used include the
following:

B A concept may be first modeled as an attribute and then refined into a rela-
tionship because it is determined that the attribute is a reference to another
entity type. It is often the case that a pair of such attributes that are inverses
of one another are refined into a binary relationship. We discussed this type
of refinement in detail in Section 7.6. It is important to note that in
our notation, once an attribute is replaced by a relationship, the attribute
itself should be removed from the entity type to avoid duplication and
redundancy.

® Similarly, an attribute that exists in several entity types may be elevated or
promoted to an independent entity type. For example, suppose that several
entity types in a UNIVERSITY database, such as STUDENT, INSTRUCTOR, and
COURSE, each has an attribute Department in the initial design; the designer
may then choose to create an entity type DEPARTMENT with a single attrib-
ute Dept_name and relate it to the three entity types (STUDENT,
INSTRUCTOR, and COURSE) via appropriate relationships. Other attrib-
utes/relationships of DEPARTMENT may be discovered later.

B An inverse refinement to the previous case may be applied—for example, if
an entity type DEPARTMENT exists in the initial design with a single attribute
Dept_name and is related to only one other entity type, STUDENT. In this
case, DEPARTMENT may be reduced or demoted to an attribute of STUDENT.

B Section 7.9 discusses choices concerning the degree of a relationship. In
Chapter 8, we discuss other refinements concerning specialization/general-
ization. Chapter 10 discusses additional top-down and bottom-up refine-
ments that are common in large-scale conceptual schema design.

7.74 Alternative Notations for ER Diagrams

There are many alternative diagrammatic notations for displaying ER diagrams.
Appendix A gives some of the more popular notations. In Section 7.8, we introduce
the Unified Modeling Language (UML) notation for class diagrams, which has been
proposed as a standard for conceptual object modeling.

In this section, we describe one alternative ER notation for specifying structural
constraints on relationships, which replaces the cardinality ratio (1:1, 1:N, M:N)
and single/double line notation for participation constraints. This notation involves
associating a pair of integer numbers (min, max) with each participation of an
entity type E in a relationship type R, where 0 < min < max and max > 1. The num-
bers mean that for each entity e in E, e must participate in at least min and at most

7.7 ER Diagrams, Naming Conventions, and Design Issues 225

max relationship instances in R at any point in time. In this method, min = 0 implies partial participation,
whereas min > 0 implies total participation.

Figure 7.15 displays the COMPANY database schema using the (min, max) notation.'* Usually, one uses
either the cardinality ratio/single-line/double-line notation or the (min, max) notation. The (min, max)

ER diagrams for the company schema, with structural con-
@ @ straints specified using (min, max) notation and role names.
(1,1) B

EMPLOYEE ' N“”_‘l_’?_r_f’_ff_”_‘f""yees\| DEPARTMENT |

0,1) Department (0,N) | Controlling
Manager Managed (1,1) Department
CONTROLS
1N
ON) ©.1) Worker Controlled
Supervis1or S’ [1.1) | Project
upervisee Project
PROJECT
(1,N) ‘
(O,N)

Employee @

DEPENDENTS_OF

(1,1) || Dependent

DEPENDENT |

{@@ Relationship

4In some notations, particularly those used in object modeling methodologies such as UML, the (min,
max) is placed on the opposite sides to the ones we have shown. For example, for the WORKS_FOR
relationship in Figure 7.15, the (1,1) would be on the DEPARTMENT side, and the (4,N) would be on the
EMPLOYEE side. Here we used the original notation from Abrial (1974).

226 Chapter 7 Data Modeling Using the Entity-Relationship (ER) Model

notation is more precise, and we can use it to specify some structural constraints for
relationship types of higher degree. However, it is not sufficient for specifying some
key constraints on higher-degree relationships, as discussed in Section 7.9.

Figure 7.15 also displays all the role names for the COMPANY database schema.

7.8 Example of Other Notation:
UML Class Diagrams

The UML methodology is being used extensively in software design and has many
types of diagrams for various software design purposes. We only briefly present the
basics of UML class diagrams here, and compare them with ER diagrams. In some
ways, class diagrams can be considered as an alternative notation to ER diagrams.
Additional UML notation and concepts are presented in Section 8.6, and in Chapter
10. Figure 7.16 shows how the COMPANY ER database schema in Figure 7.15 can be
displayed using UML class diagram notation. The entity types in Figure 7.15 are
modeled as classes in Figure 7.16. An entity in ER corresponds to an object in UML.

Figure 7.16
The COMPANY conceptual schema
in UML class diagram notation.

EMPLOYEE 4% WORKS FOR 1.1 DEPARTMENT Multiplicity
Name: Name_dom - = — Name Notation in OMT:
Fname | o1 Number — 1.1
Minit - — add_employee ® 0-
Lname number_of_employees 0 0.1

Ssn MANAGES change_manager 0.*
Bdate: Date Start dat -
Sex: {M,F} art_date
Address . 1.1
1.
Salary
age) 1.x
change_department CONTROLS LOCATION
change_projects supervisee | [WORKS_ON Namo
e Hours 1.1
‘ Dependent_name ‘ 0..1 1.f *)
supervisor PROJECT
0.x
Name
DEPENDENT Number
S?X: {M,F} add_employee Aggregation
g'r;‘htfdatﬁf Date add_project Notation in UML:
elationship change_manager
98- 9 ‘Wholek>—‘ Part ‘

