
ADP EXERCISES (07/06/2023)
 Create a new folder / directory (say mywebapp) in the xampp/htdocs/ folder.
 Keep all files in the mywebapp folder.
 Crate a simple HTML Form and call it simpleform.html and save it in the mywebapp folder. Create a php file getformdetails1.php and getformdetails2.php save it in the mywebapp folder. Let the simpleform.html send the data through the action attribute to getformdetails1.php. getformdetails1.php has php echoing the form data in a HTML table and getformdetails2.php has php embedded in html tags. Ex: getformdetails1.php $uname=$_POST["uname"]; //assuming the method is POST echo “<table><td><tr>uname</tr><tr>”.$uname."</tr></td></table>”; Ex: getformdetails2.php <?php $uname=$_POST["uname"]; ?> //assuming the method is POST <html><body> <table><td><tr>uname</tr><tr><?php echo $uname; ?></tr></td></table></body></html>
 Start the xampp server.
 Type localhost on the browser to check if the server is up and running.

/sample code snippet: and both the .html and .php should reside on the server. //simpleform.html <html> <body> <form action="getdetails.php" method="get"> Name: <input type="text" name="uname">
 Branch: <input type="text" name="branch">
 <input type="submit"> </form></body></html> //getdetails.php <?php ?> <html> <body> Welcome <?php echo $_GET["uname"]; ?>
 Your branch is: <?php echo $_GET["branch"]; ?> </body></html> //refer to php cheatsheets for more

1. Implement the client-server communication using the above two server side files (getformdetails1.php, getformdetails2.php). 2. Create a session variable using any of the values from FORM data of your choice. Save any php file (say first.php) with the statements as shown in red. <?php session_start(); ?> //php sessions, php include file: a session is duration of time in which a series of requests and responses are made from the same client. Maintaining the user state / remember the user between a series of requests and responses. The fundamental problem with http is statelessness (no state information is retained by the server between request-response pairs), which is overcome with session variables. Any variable can be used as a session variable. It is important to start any php page with the session_start(); statement <?php Session_start(); $uname=$_POST["uname"]; $_SESSION["uname"]=$_POST["uname"]; // setting a session variable ?> 3. Now create another php page say second.php and call it from within first.php with a button click in the first.php (the goal is to set session variables in one page while access them in another page as global variables), <input type="button" name="b1" value="redirect" onClick='document.location.href="second.php"'/> second.php <?php session_start(); print_r($_SESSION); ?>// prints all the session variables as name value pairs of an array. There can be multiple session variables for a session. here we are using print instead of echo. delete session variables by calling the two built-in functions in that order:
session_unset(); session_destroy(); 4. Using include; //including one php files inside another Ex: create first.php and include second.php inside first.php as first.php <?php include ‘second.php’; echo $name.”
”.$bat; second.php

$name = ‘alpha’; $bat = “P”;

/

