
CS6308 –JAVA PROGRAMMING LAB

INHERITANCE AND INTERFACES

DATE: 16.3.23

Question A

Create an abstract class called Employee with members:Empid(int), name(string),

designation(string), DateofJoining(Date); constructor with arguments, toString(), with

abstract method double calculateSal(). (2 marks)

interface CalBonus{

double calBonus();

} (1 mark)

Derive a class called PermanentEmployee from Employee with fields: basicPay(double),

gradePay(double), bonus(double), methods: constructor, toString(), override double

calculateSalary that returns the salary by adding basicPay(double), gradePay(double)and

bonus (3 marks)

 PermanentEmployee implements interface CalBonus that overrides calBouns() by using

the following calculations: (2 marks)

 if basicPay greater than 10,000, bouns 5% of salary

 if basicPay less than 10,000, bouns 10% of salary

 if basicPay less than 5,000, bouns 15% of salary.

Derive a class called Salesperson from Employee whose data members are:

basicSalary(double), SalesAmount(double) and noofSales(integer). The member functions

are:

a. constructor with three arguments to initialise member variables age, name

and salary; SalesAmount and noofSales is initialised to zero

b. addSale(double amount) – method to increment the number of sales and

add the amount made to the SalesAmount

c. int getSales() – to return the sales made by the Salesperson

d. double getTotalSalesAmount()- to return the TotalSalesAmount made by

the Salesperson

e. toString – to display the details of the Salesperson (3 marks)

f. implement interface CalBonus that overrides calBouns() to return the

bonus by using the following calculations: (2)

SalesAmount Bonus amount

10000-20000 1000

20000 – 40000 2000

>40000 5000

g. override calculateSal() to return the salary by adding bonus with

basicSalary. (1)

Define TestEmployee that instantiates objects of Manager and SalesPerson. The methods

of the derived class are tested. Check the SalesPerson object is an instance of class

Student. (2)

Question B

Create an abstract class called Account that has datamembers: accno(int), accname(String)

and balance(double), contactAddress(Address). The member methods are: parameterized

constructor and toString method. abstract methods : void deposit(double amt) and double

withdraw(double amt)

(3 marks)

Derive two classes from class Account: SavingsAccount and CheckingsAccount. The

members of SavingsAccount are noofTransactions(int), parameterized constructor,

overridden methods toString(), deposit(double amt) that increments balance with amt,

withdraw(double amt) that decrements the balance by amt and noofTransactions is

incremented by 1 inside deposit() and withdraw().The members of CheckingAccount are

parameterized constructor, overridden methods deposit(double amt) that increments balance

with amt, withdraw(double amt) that decrements the balance by amt only if the balance is

above 1000 after decrementation and toString(). (5 marks)

Define TestAccount that instantiates objects of SavingsAccount and CheckingsAccount.

The methods of the derived class are tested. Check the SavingsAccount object is an instance

of class Account.

(2 marks)

public interface Calculate{

public static final int totalTrans = 3;

double interest_rate = 0.15;

public double cal_interest();

} (1 marks)

Implement the following interface in SavingsAccount and CheckingAccount. The totalTrans

gives the total number of transactions the SavingsAccount object can perform while the

cal_interest is overridden in CheckingsAccount to calculate the interest for the balance (using

the formula PNR/100). (4 marks)

Question C

Create an class called Course with fields: courseName(string), credits(int) - the value of

credits can be 3 or 4, contactHrs(int), Grade(String), type(String) which indicates whether

core or elective; Constructor with args, toString() and calcuateGrade(double) – which

initialises the grade based on the mark passed as argument as given below : (2 marks)

0-49 – U

50- 60 –D

61 -70 – C

71-80 – B

81-90 – A

91-100 - O

Create an abstract class called Student with fields: name(String), cgpa(double), rollNo(int);

coursesEnrolled <Course> - arraylist of courses; Constructor with three arguments for

initialising name, cgpa and rollNo inside which arraylist of courses created but null list and

toString(),

abstract methods :void enrollCourse(Course), void dropCourse(Course), bool

findCourse(Course), (2 marks)

Derive a class called FullTimeStudent from Class Student with static member:

maxCredits(int) initialized to 24 indicating the maximum number of credits the

FullTimeStudent can enroll per semester; constructor with arguments, static method: void

modifyCredits(int) that modifies the value of maxCredits.

Override the following methods: enrollCourse(Course) that adds courseEnrolled<Courses>

such that the number of credits doesnot exceed maxCredits and also it should not been

already enrolled; dropCourse(Course) that removes the Course passed as argument from

courseEnrolled<Courses>; bool findCourse(Course) – returns true or false if the given course

existes in the courseEnrolled<Courses>, toString- display the details of FullTimeStudent.(4

marks)

Derive a class called PartTimeStudent from Class Student with static member:

maxCourses(int) initialied to 3 that indicates the maximum number of Courses that

PartTimeStudent can enroll per semester; constructor with arguments, static method: void

modifyNoCourses(int) that modifies the value of maxCourses

Override the following methods: enrollCourse(Course) that adds courseEnrolled<Courses>

such that the number of courses doesnot exceed maxCredits and also it should not been

already enrolled; dropCourse(Course) that removes the Course passed as argument from

courseEnrolled<Courses>; bool findCourse(Course) – returns true or false if the given course

exists in the courseEnrolled<Courses>, toString- display the details of PartTimeStudent. (4

marks)

Define TestStudent that instantiates objects of PartTimeStudent and FullTimeStudent. The

methods of the derived class are tested. Check the PartTimeStudent object is an instance of

class Student. (2 marks)

public interface Calculate{

public static final double cal_CGPA();

} (1 marks)

Implement the following interface in FullTimeStudent and PartTimeStudent. The

cal_CGPA()t is overridden in FullTimeStudent and PartTimeStudent to calculate cgpa of

the respective objects. (2 marks)

Question D

Create an abstract class Player with fields: id(int) – indicates the id number of the Player,

balance(double) – the amount of money, gamesPlayed(int)- indicates the number or games

played by Player; Constructor with arguments in which the gamesPlayed is initialised to zero,

toString(), abstract method: void incrgamesPlayed() and calBonus() (2)

Derive a class PremiumPlayer with fields: points(int) initialised to zero in constructor with

arguments, toString()

abstract method: void incrgamesPlayed() to increment the value of gamesPlayed whenever a

game is started to play by a value of one.

calBonus() – increments the balance by the value passed as argument (3)

interface MineSweeper{

public static final int gameDuration = 60;

public static final int wonpoints = 5;

bool startGame(gameDuration);

int statusGame(String);

} (2)

interface Cal_Bonus{

public static final int bonusperPoint = 20;

int calBonus();

} (2)

The class PremiumPlayer implements the following interfaces MineSweeper and Cal_Bonus.

Override the methods such that:

bool startGame() starts incrementing the gameDuration from 0 until 60 and returns 1 if game

finished

void statusGame(String) – that increments the points by wonpoints if the argument passed is

WIN or else LOST no change in points

int calBonus() – which returns the bonus obtained by the PremiumPlayer by mutlipyng the

bonusperpoint and points.

(4)

Define TestPlayer that instantiates objects of PremiumPlayer. The methods of the derived

class are tested. Check the PremiumPlayer object is an instance of class Player.

(2 marks)

