

CMPS161 Class Notes (Chap 02) Kuo-pao Yang Page 1 / 21

Chapter 2

Elementary Programming

2.1 Introduction

 You will learn elementary programming using Java primitive data types and related subjects,

such as variables, constants, operators, expressions, and input and output.

2.2 Writing Simple Programs

 Writing a program involves designing algorithms and data structures, as well as translating

algorithms into programming code.

 An Algorithm describes how a problem is solved in terms of the actions to be executed, and

it specifies the order in which the actions should be executed.

 Computing an area of a circle. The algorithm for this program can be described as follows:

1. Read in the Radius

2. Compute the area using the following formula:

 Area = radius * radius * ∏

3. Display the area.

 Java provides data types for representing integers, floating-point numbers, characters, and

Boolean types. These types are known as primitive data types.

 When you code, you translate an algorithm into a programming language understood by the

computer.

 The outline of the program is:

public class ComputeArea {

 public static void main(String[] args) {

 double radius; // Declare radius

 double area; // Declare area

 // Assign a radius

 radius = 20; // New value is radius

 // Compute area

 area = radius * radius * 3.14159;

 // Display results

 System.out.println("The area for the circle of radius " +

 radius + " is " + area);

 }

}

CMPS161 Class Notes (Chap 02) Kuo-pao Yang Page 2 / 21

 The program needs to declare a symbol called a variable that will represent the radius.

Variables are used to store data and computational results in the program.

 Use descriptive names rather than x and y. Use radius for radius, and area for area. Specify

their data types to let the compiler know what radius and area are, indicating whether they are

integer, float, or something else.

 The program declares radius and area as double-precision variables. The reserved word

double indicates that radius and area are double-precision floating-point values stored in the

computer.

 For the time being, we will assign a fixed number to radius in the program. Then, we will

compute the area by assigning the expression radius * radius * 3.14159 to area.

 The program’s output is:

The area for the circle of radius 20.0 is 1256.636

 A string constant should not cross lines in the source code. Use the concatenation operator

(+) to overcome such problem.

CMPS161 Class Notes (Chap 02) Kuo-pao Yang Page 3 / 21

2.3 Reading Input from the Console

Getting Input Using Scanner
 Create a Scanner object

Scanner scanner = new Scanner(System.in);

 Use the methods next(), nextByte(), nextShort(), nextInt(), nextLong(), nextFloat(),

nextDouble(), or nextBoolean() to obtain to a string, byte, short, int, long, float, double, or

boolean value. For example,

System.out.print("Enter a double value: ");

Scanner scanner = new Scanner(System.in);

double d = scanner.nextDouble();

 Listing 2.2 ComputeAreaWithConsoleInput.java

import java.util.Scanner; // Scanner is in the java.util package

public class ComputeAreaWithConsoleInput {

 public static void main(String[] args) {

 // Create a Scanner object

 Scanner input = new Scanner(System.in);

 // Prompt the user to enter a radius

 System.out.print("Enter a number for radius: ");

 double radius = input.nextDouble();

 // Compute area

 double area = radius * radius * 3.14159;

 // Display result

 System.out.println("The area for the circle of radius " +

 radius + " is " + area);

 }

}

 Caution

By default a Scanner object reads a string separated by whitespaces (i.e. ‘ ‘, ‘\t’, ‘\f’, ‘\r’, and

‘\n’).

Enter a number for radius: 23

The area for the circle of radius 23.0 is 1661.90111

CMPS161 Class Notes (Chap 02) Kuo-pao Yang Page 4 / 21

2.4 Identifiers

 Programming languages use special symbols called identifiers to name such programming

entities as variables, constants, methods, classes, and packages.

 The following are the rules for naming identifiers:

o An identifier is a sequence of characters that consist of letters, digits, underscores

(_), and dollar signs ($).

o An identifier must start with a letter, an underscore (_), or a dollar sign ($). It cannot

start with a digit.

o An identifier cannot be a reserved word. (See Appendix A, “Java Keywords,” for a

list of reserved words).

o An identifier cannot be true, false, or null.

o An identifier can be of any length.

 For example:

o Legal identifiers are for example: $2, ComputeArea, area, radius, and

showMessageDialog.

o Illegal identifiers are for example: 2A, d+4.

o Since Java is case-sensitive, X and x are different identifiers.

CMPS161 Class Notes (Chap 02) Kuo-pao Yang Page 5 / 21

2.5 Variables

 Variables are used to store data in a program.

 You can write the code shown below to compute the area for different radius:

// Compute the first area

radius = 1.0;

area = radius*radius*3.14159;

System.out.println("The area is “ + area + " for radius "+radius);

// Compute the second area

radius = 2.0;

area = radius*radius*3.14159;

System.out.println("The area is “ + area + " for radius "+radius);

Declaring Variables

 Variables are used for representing data of a certain type.

 To use a variable, you declare it by telling the compiler the name of the variable as well as

what type of data it represents. This is called variable declaration.

 Declaring a variable tells the compiler to allocate appropriate memory space for the variable

based on its data type. The following are examples of variable declarations:

int x; // Declare x to be an integer variable;

double radius; // Declare radius to be a double variable;

char a; // Declare a to be a character variable;

 If variables are of the same type, they can be declared together using short-hand form:

Datatype var1, var2, …, varn; variables are separated by commas

Declaring and Initializing Variables in One Step

 You can declare a variable and initialize it in one step.

int x = 1;

This is equivalent to the next two statements:

int x;

x = 1;

// shorthand form to declare and initialize vars of same type

int i = 1, j = 2;

 Tip: A variable must be declared before it can be assigned a value.

CMPS161 Class Notes (Chap 02) Kuo-pao Yang Page 6 / 21

2.6 Assignment Statements and Assignments Expressions

 After a variable is declared, you can assign a value to it by using an assignment statement.

The syntax for assignment statement is:

variable = expression;

x = 1; // Assign 1 to x; Thus 1 = x is wrong

radius = 1.0; // Assign 1.0 to radius;

a = 'A'; // Assign 'A' to a;

x = 5 * (3 / 2) + 3 * 2; // Assign the value of the expression to x;

x = y + 1; // Assign the addition of y and 1 to x;

 The variable can also be used in the expression.

x = x + 1; // the result of x + 1 is assigned to x;

 To assign a value to a variable, the variable name must be on the left of the assignment

operator.

1 = x; // would be wrong

 In Java, an assignment statement can also be treated as an expression that evaluates to the

value being assigned to the variable on the left-hand side of the assignment operator. For this

reason, an assignment statement is also known as an assignment expression, and the symbol

= is referred to as the assignment operator.

System.out.println(x = 1);

which is equivalent to

x = 1;

System.out.println(x);

The following statment is also correct:

i = j = k = 1;

which is equivalent to

k = 1; j = k; i = j;

CMPS161 Class Notes (Chap 02) Kuo-pao Yang Page 7 / 21

2.7 Named Constants

 The value of a variable may change during the execution of the program, but a constant

represents permanent data that never change.

 The syntax for declaring a constant:

final datatype CONSTANTNAME = VALUE;

final double PI = 3.14159; // Declare a constant

final int SIZE = 3;

 A constant must be declared and initialized before it can be used. You cannot change a

constant’s value once it is declared. By convention, constants are named in uppercase.

import java.util.Scanner; // Scanner is in the java.util package

public class ComputeAreaWithConstant {

 public static void main(String[] args) {

 final double PI = 3.14159; // Declare a constant

 // Create a Scanner object

 Scanner input = new Scanner(System.in);

 // Prompt the user to enter a radius

 System.out.print("Enter a number for radius: ");

 double radius = input.nextDouble();

 // Compute area

 double area = radius * radius * PI;

 // Display result

 System.out.println("The area for the circle of radius " +

 radius + " is " + area);

 }

}

 Note: There are three benefits of using constants:

o You don’t have to repeatedly type the same value.

o The value can be changed in a single location.

o The program is easy to read.

